최근 수정 시각 : 2025-08-22 11:07:19

퍼지 함수

퍼지 논리에서 넘어옴

논리학
Logics
{{{#!wiki style="margin: -0px -10px -5px; min-height: 28px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -6px -1px -11px;"
<colbgcolor=#2ab5b5> 형식 논리 명제 논리(논리 연산 · 삼단논법(정언삼단논법) · 순환 논법 · 대당 사각형 ) ·정언 논리 · 공리 · 진릿값 · 조건문 · 필요조건과 충분조건 · 술어 논리 · 논증(논증의 재구성) · 모순 · 역설 · 논리적 오류(논리적 오류/형식적 오류) · 변증법
<colcolor=#000,#fff><keepall> 비표준 논리 직관 논리 · 양상논리 · 초일관 논리 · 다치논리(퍼지논리) · 선형논리 · 비단조 논리
<keepall> 메타 논리 집합론 · 완전성 정리 · 불완전성 정리
비형식 논리 딜레마(흑백논리)
<keepall> 비형식적 오류 귀납적 오류 · 심리적 오류 · 언어적 오류 · 자료적 오류 · 양비론 · 진영논리 · 편견 및 고정관념 · 궤변 · 거짓 등가성
분야 수학철학 · 수리논리학
철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 · 수리논리학 둘러보기
}}}}}}}}} ||
수학기초론
Foundations of Mathematics
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
다루는 대상과 주요 토픽
수리논리학 논리 · 논증{귀납논증 · 연역논증 · 귀추 · 유추} · 정리(보조정리) · 공리 및 공준 · 증명{반증 · PWW · 귀류법 · 수학적 귀납법 · 더블 카운팅 · 자동정리증명(증명보조기)} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문(조각적 정의) · 명제 논리(명제 · 아이버슨 괄호 · · · 대우) · 양상논리 · 술어 논리(존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론
집합론 집합(원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계{동치관계 · 순서 관계(부분 순서 관계 · 하세 다이어그램)} · 순서쌍(튜플) · 서수(큰 가산서수 · 초한귀납법) · 수 체계 · ZFC(선택공리) · 기수(초한기수) · 초한수 · 절대적 무한 · 모임
범주론 범주 · 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성
계산가능성 이론 계산 · 오토마타 · 튜링 머신 · 바쁜 비버 · 정지 문제 · 재귀함수
정리
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 퍼스의 법칙 · 굿스타인 정리 · 완전성 정리 · 불완전성 정리(괴델 부호화) · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리
기타
예비사항(약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 }}}}}}}}}



해석학·미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사(어림)
수열·급수 수열(규칙과 대응) · 급수(기하급수 · 조화급수 · 멱급수 · 테일러 급수(/목록) · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱 · 피보나치 수열
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수(이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분(/예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분(코시 주욧값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분 편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식 미분방정식(/풀이) · 라플라스 변환
실해석· 측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수(주부) · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · [math(C^*)]-대수 · 폰 노이만 대수
정리 바나흐-앨러오글루 정리 · 베르 범주 정리 · 스펙트럼 정리 · 한-바나흐 정리
이론 범함수 미적분학 · 디랙 델타 함수(분포이론)
조화해석 푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학(양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학(경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

1. 퍼지 이론2. 퍼지 집합과 멤버십 함수

1. 퍼지 이론

퍼지 논리(fuzzy logic) 라고도 불린다. 아제르바이잔 출신 미국인 수학/공학자 롯피 자데(Lotfi A. Zadeh)가 처음으로 제안했는데, 그는 자신의 아내의 아름다움을 수학적으로 계산하기 위해 이 이론을 고안했다고 한다.

우리가 흔히 알고 있는 명제 혹은 집합에서는 참, 거짓과 같이 객관적으로 뜻이 명확한 것들만을 다룬다. 그러나 그런 이상적인 상황과는 달리, 실제 생활에서는 뭐든지 참이나 거짓으로 딱 나뉘지 않는다. 이 애매모호한 기준을 다루기 위해 생긴 수학적 도구가 바로 퍼지 이론이다.[1] 따라서 퍼지 이론에서는 불분명하거나 주관적인 기준 역시 명제, 집합 따위를 이용해 설명할 수 있다.

예를 들어, 일반적인 명제, 집합에서는 '작은 숫자들의 모임'과 같이 주관적인 건 정의되지 않았다. 그러나 퍼지 이론에서는 그런 불분명한 기준을 정도에 따라 단계별로 제시하여 설명한다. 예컨대 '빠른 동물들의 모임'이라고 하면 '빠른 동물들', '조금 빠른 동물들', '조금 느린 동물들', '느린 동물들' 등으로 분류할 수 있다.

퍼지 이론은 처음엔 잘 받아들여지지 못했다. 많은 사람들이 '애매한 기준'에 대해 수학적으로 논한다는 것 자체가 기존의 수학 개념들과 상반되어 허용될 수 없다고 생각했기 때문이다. 당장 자데의 절친한 친구이자, 칼만 필터를 개발한 루돌프 칼만에게 혹독한 평가를 들었는데, 절친한 동료로부터도 비난을 받을 정도이니 말 다한 것이다. 그러나 애매모호한 기준을 다루는 퍼지는 실제 상황을 다루기가 편리했으므로 여러 분야에 널리 쓰이게 됐다.

퍼지 이론은 일본 가전 업계에 큰 영향을 주었는데, 당시 '일본이 미국의 기초연구를 도둑질해서 제품 개발만 한다'는 미국 쪽의 비난을 부담스러워하는 일본 내 분위기에서 일본 대학에서 진행되던 퍼지 기술 연구에 기업이 합류했다. 1987년 히타치센다이시 당국에 납품한 전철용 퍼지 제어시스템으로 대성공을 거뒀다. (1) 급가속·급제동의 빈도를 격감시켰고, (2) 열차 정차 위치의 정확도가 높아졌으며, (3) 전력 소비도 절감할 수 있었다.[2] 퍼지 기술이 적용된 진공청소기, 밥솥, 카메라, 캠코더, 식기세척기, 등유 온풍기 등이 쏟아져 나왔다. 기초연구를 통해 추상적인 퍼지 이론을 실용화해냄으로써 ‘일본의 미국 기초연구 무임승차론’을 붕괴시켰다고 일본이 자부할 정도의 거대한 충격이었고 이 것은 이어서 국내 가전 업계에 큰 자극을 주었다.[3]

국내에서는 제17대 카이스트 총장 이광형과, 공주대학교의 성열욱 명예교수가 이 분야에서 잘 알려져 있다. 그에 따라 국내에서는 1990년대에 주로 연구가 이루어졌다.

퍼지 이론은 외국에 비해 한국에서는 그다지 연구되고 있지 않다. 예전에 비해 현재는 논문도 많이 나오고 있지 않다. 20여년 전 한때 퍼지 이론이 유행할 때는 공학 분야에서는 이용되는 경우가 종종 있었다. 세탁기, 사진기, 발효 식품, 자동차 브레이크엔진, 컬러 필름 현상, 제조 공정, 기상 분석, 인공지능 등 다양한 방면에 응용된 일이 있다. 퍼지 논리를 활용하여 사회과학 제 분야에서 특정 사회 현상의 (충분)조건을 밝히거나 특정 사회 현상을 충족하는 유형의 분류 등에 활용된 연구도 있다.[4]

2. 퍼지 집합과 멤버십 함수

일반적인 집합을 [math(X)]라 할 때 퍼지 집합은 각 원소들에 대하여 소속도(grade)의 개념을 추가한 집합을 말한다. 예를 들어 함수 [math(f:X\to \left[0, 1\right])]가 있을 때 다음과 같은 집합을 말한다.
[math(\left\{\left(x, f\left(x\right)\right)|x\in X\right\})]
이 때 f를 멤버십 함수(membership function)라 부른다.


[1] 영단어 'fuzzy'가 '애매모호함'을 뜻한다.[2] 실제로 센다이시 교통국 1000계 전동차에는 일본 최초로 퍼지 제어를 응용한 ATO가 적용되었다.[3] https://www.hani.co.kr/arti/science/technology/1113026.html[4] 퍼지 논리 자체가 논리학을 기반으로 하고 있으므로, 사회과학에도 활용될 수 있으며, '정량'과 '정성'이 계속해서 충돌하는 사회과학에서 '애매함'을 정량적 방법으로 논할 수 있다는 점이 매력적으로 여겨질 수 있다.