- [증명]
- -------
(출처: 해석학 1, Herbert Amann, Joachim Escher)
- 수열 [math(\{a_n\})]이 위로 유계인 단조증가수열이라 하자. 그러면 수열의 치역 집합 [math(A)]는 실수 집합 안에서 비어 있지 않은 유계이다. 완비성 공리에 의해 [math(A)]는 실수 안에서 상한 [math(a)]가 존재한다.
- 보조정리: 임의의 수 [math(x)]가 어떤 집합의 상한보다 작을 때, 그 집합 안에는 항상 [math(x)]보다 큰 수 [math(y)]가 존재한다. (만약 [math(x)]가 집합 안의 모든 [math(y)]보다 더 크거나 같다면, [math(x)]는 그 집합의 상계이므로 상한보다 작을 수 없다. 상한의 정의가 '제일 작은 상계'이므로.)
그러므로, 임의의 양수 [math(\epsilon)]이 주어지면 보조정리에 의해 다음 식을 만족하는 자연수 [math(N)]을 찾을 수 있다. {{{#!wiki style="text-align:center" [math(\begin{aligned} a_N > a-\epsilon \end{aligned} )]}}}그리고 수열 [math(\{a_n\})]은 단조증가수열이므로, [math(N)]보다 더 큰 자연수 [math(k))]대해 다음과 같은 부등식이 성립한다. {{{#!wiki style="text-align:center" [math(\begin{aligned} a_k \ge a_N > a-\epsilon \end{aligned} )]}}}그러므로 거의 모든 (유한한 수열의 항 빼고) 수열의 항이 [math(a)]의 [math(\epsilon)]-근방에 있으므로, 수열 [math(\{a_n\})]는 [math(a)], 즉 수열의 치역의 상한으로 수렴한다. i. 만약 수열 [math(\{a_n\})]이 아래로 유계인 단조감소수열이면, [math(a)]를 수열의 치역의 하한으로 잡고 [math(b_n = -a_n)]으로 놓으면 수열 [math(\{b_n\})]은 위로 유계인 단조증가수열이다. 수열 [math(\{b_n\})]의 상한은 [math(-a)]이므로, ii.를 통해서 [math(-a)]로 수렴하는 걸 알 수 있다. 그러므로 수열 [math(\{a_n\})]은 수열의 치역의 하한 [math(a)]로 수렴하는 것을 알 수 있다.
|