1. 개요
Weierstrass factorization theorem / Weierstrass 分解 定理 / (독일어)Weierstraßscher Produktsatz독일의 수학자 카를 바이어슈트라스가 정립한 바이어슈트라스 분해 정리 또는 바이어슈트라스 곱 정리는 전해석 함수(entire function)[1]는 영점을 포함한 무한곱으로 표기될 수 있다는 정리이다. 또한 모든 다항함수가 각근에서의 한 선형인수로 분해가 되므로 대수학의 기본 정리의 확장으로도 볼 수 있는 정리이다.
바이어슈트라스 분해 정리는 유리형 함수(meromorphic function)로까지 일반화하여 확장할 수 있으며, 유리형 함수가 세 가지 요소, 즉 함수의 극점 및 영점이 인수인 식, 0이 아닌 정칙함수(holomorphic function)[2]의 곱으로 나타낼 수 있다는 것을 보여준다.
또한 극점을 가진 함수를 유리형 함수의 무한합으로 표현하는 미타그레플레르 정리와 유사한 점이 있다.
2. 상세
정리에 앞서 기본 인자(elementary factor)를 짚고 넘어가야 한다. 대수학의 기본 정리를 전해석 함수로 확장하는 데에 아주 중요한 역할을 하기 때문.정리에는 두 가지 형태가 있는데, 하나는 특정 영점을 갖는 전해석 함수가 존재함을 보이는 정리이며 나머지 하나는 그 반대, 전해석 함수가 존재할 때 특정 영점을 인수로 갖는 무한곱으로 나타낼 수 있음을 보이는 정리이다. 보통 후자를 바이어슈트라스 분해 정리라고 한다.
2.1. 기본 인자
Elementary factor. 주요 인자(primary factor)라고도 한다.범자연수 [math(n)], [math(|z|<1)]에 대해 다음과 같이 기본 인자를 정의하자.
[math(E_n(z) = \begin{cases} 1-z && (n=0) \\ (1-z)\exp\left(\displaystyle \sum_{k=1}^n\frac{z^k}k\right) && (n\ge1)\end{cases})] |
[math(\displaystyle \ln(1-z) = -\int\frac{{\rm d}z}{1-z} = -\int\sum_{n=0}^\infty z^n{\rm d}z = -\sum_{n=0}^\infty\frac{z^{n+1}}{n+1} = -\sum_{n=1}^\infty\frac{z^n}n)] |
[math(\displaystyle E_n(z) = (1-z)\exp\left(\sum_{k=1}^n\frac{z^k}k\right) = \exp\left(-\sum_{k=1}^\infty\frac{z^{n+k}}{n+k}\right))] |
2.2. 특정 영점을 갖는 전해석 함수의 존재 정리
[math(a_n\ne0)]인 복소수 수열이 [math(|a_n|\to\infty)]이고, 정수 수열 [math(p_n)]이 모든 [math(r>0)]에 대해, [math(\displaystyle\sum_{n=1}^\infty\left(\frac r{|a_n|}\right)^{1+p_n}<\infty)]를 만족할 때, 다음 함수
은 [math(a_n)]에서만 영점을 갖는 전해석 함수이다. 복소수 [math(z_0)]가 수열 [math(a_n)]에 [math(m)]개 있다면 함수 [math(f)]는 [math(z=z_0)]에서 다중도가 [math(m)]인 영점을 갖는다.
[math(\displaystyle f(z) = \prod_{n=1}^\infty E_{p_n}\left(\frac z{a_n}\right))] |
2.3. 바이어슈트라스 분해 정리
전해석 함수 [math(f)]에 관하여, 수열 [math(a_n\ne0)]이 [math(f)]의 영점이며, [math(m\ge0)]인 정수 [math(m)]에 대해 [math(f)]가 0에서 다중도 [math(m)]의 영점을 가진다고 하면, 정수 수열 [math(p_n)]과 전해석 함수 [math(g)]이 존재해 [math(f)]는 다음과 같은 관계를 만족한다.
[math(\displaystyle f(z) = z^m e^{g(z)} \prod_{n=1}^\infty E_{p_n}\left(\dfrac z{a_n}\right))] |
3. 계기
대수학의 기본 정리의 결과로부터 2가지 사실을 알 수 있다.- 복소 평면에서의 유한 수열 [math(c_n)]에 관하여, [math(c_n)]이 영점인 다항식 [math(p(z))]가 존재하며, 그 꼴은 다음과 같다.
[math(\displaystyle p(z) = \prod_n(z-c_n))] |
- 복소 평면 내의 모든 다항함수 [math(p(z))]는 [math(a\ne0)]인 상수, 영점 [math(c_n)]을 이용하여 다음과 같은 인수분해식으로 나타낼 수 있다.
[math(\displaystyle p(z) = a \prod_n(z-c_n))] |
바이어슈트라스 분해 정리의 두 가지 형태는 위 사실을 전해석 함수로 확장한 것이라고 볼 수 있다. 이때 [math(c_n)]이 유한 수열이 아닐 경우 그 무한곱 [math(\displaystyle \prod_n(z-c_n))]은 수렴하지 않기 때문에 전해석 함수를 정의할 수 없고, 따라서 이를 보완하기 위한 추가적인 수학적 논리가 필요했다. 일반적으론 미리 정해진 영점 수열로부터 전해석 함수를 정의하거나, 대수학의 기본 정리에 의해 유도되는 영점으로 전해석 함수를 표현하는 것은 불가능하다.
이 경우 무한곱이 수렴하기 위한 필요조건은 [math((z-c_n))]과 같이 표현된 인수들이 [math(n\to\infty)]일 때 [math(1)]로 수렴하는 것이다. 따라서 주어진 점에서 [math(0)]이 되는 것은 물론, 그 점 이외에는 [math(1)]로 수렴하게 하면서 주어진 개수보다 많은 영점을 가지면 안 되는 조건을 모두 충족해야한다. 바이어슈트라스의 기본 인자 [math(E_n(z))]는 이 조건을 모두 충족하며 상기한 대수학의 기본 정리의 인수 [math((z-c_n))]과 똑같은 역할을 한다.
4. 예시
4.1. 삼각함수·쌍곡선함수
삼각함수 · 쌍곡선함수 Trigonometric Functions · Hyperbolic Functions | ||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#f080b0> 기본 개념 | 기하학{평면기하학(삼각형 · 삼각비 · 원 · 쌍곡선)} · 해석학{좌표계 · 복소평면 · 함수(초월함수 · 특수함수)} |
삼각함수 | 사인곡선(위상수학자의 사인곡선) · 역함수 · 도함수 · 역도함수 · 관련 함수 · 삼각함수의 덧셈정리 · #s-4.1 · 미타그레플레르 정리 · 오일러 공식 · 푸리에 해석(푸리에 변환) · 삼각 적분 함수 · 구데르만 함수 · 프레넬 적분 함수 · 디리클레 함수 · 바이어슈트라스 함수 · 볼테라 함수 · 에어리 함수 · 야코비 타원 함수 | |
쌍곡선함수 | 현수선 · 쌍곡선 적분 함수 · 구데르만 함수 | }}}}}}}}} |
<colbgcolor=#efefef,#555555> [math(\boldsymbol{\sin({\pi}z)})] | [math(\begin{aligned} \displaystyle \pi z \prod_{n\ne0}\left(1-\dfrac zn\right)e^{z/n} = \pi z \prod_{n=1}^{\infty} \left\{1-\left(\dfrac zn\right)^2\right\} \end{aligned})] |
[math(\boldsymbol{\cos({\pi}z)})] | [math(\begin{aligned} \displaystyle \prod_{q=2n+1,\,n\in\mathbb Z}\left(1-\dfrac{2z}q\right)e^{2z/q} = \prod_{n=1}^\infty \left\{1-\left(\dfrac {2z}{2n-1}\right)^2\right\} \end{aligned})] |
[math(\boldsymbol{\sinh(z)})] | [math(\begin{aligned} \displaystyle z \prod_{n=1}^\infty \left\{1+\left(\dfrac {z}{nπ}\right)^2\right\} \end{aligned})][3] |
4.2. 감마 함수
감마 함수 [math(\Gamma(z))]에 관하여, [math(f(z) = \dfrac1{\Gamma(z)})]일때,[math(\displaystyle f(z)=e^{\gamma z}z \prod_{n=1}^\infty\left(1+\dfrac zn\right)e^{-z/n})] |
여기서 [math(\gamma)]는 오일러-마스케로니 상수이다.
4.2.1. 증명 방법
바이어슈트라스는 감마 함수의 단순항꼴을 정리해서 오일러-마스케로니 상수가 포함된 새로운 감마 함수의 형태를 증명했다.[math(\displaystyle \Gamma(z)=\lim_{n\to\infty}\frac{n!\,n^z}{\displaystyle \prod_{i=0}^n (z+i)})] |
[math(\begin{aligned}\displaystyle \Gamma(z) &= \lim_{n\to\infty}\frac{n!\,e^{z\ln n}}{z\displaystyle \prod_{i=1}^n (z+i)} = \lim_{n \to \infty} \frac 1z \frac{n!\,e^{z\ln n}}{\displaystyle \prod_{i=1}^n \left\{ i \left(1+\dfrac zi \right) \right\}} \\ &= \lim_{n \to \infty} \frac 1z \frac{\cancel{n!}\,e^{z \ln n}}{\displaystyle \cancel{n!} \prod_{i=1}^n \left(1+\dfrac zi \right)} = \lim_{n \to \infty} \frac 1z \frac{e^{z \ln n}}{\displaystyle \prod_{i=1}^n \left(1+\dfrac zi \right)}\end{aligned})] |
[math(\displaystyle \begin{aligned} \Gamma(z) &= \lim_{n\to\infty} \frac1z \frac{e^{z\ln n}}{e^{z \sum\limits_{i=1}^n \frac1i}} \frac{\displaystyle \prod_{i=1}^n e^{\frac zi}}{\displaystyle \prod_{i=1}^n \Bigl( 1+\dfrac zi \Bigr)} \\ &= \lim_{n\to\infty} \frac1z e^{z \Bigl( \ln n -\sum\limits_{i=1}^n \frac1i \Bigr)} \prod_{i=1}^n \frac{e^{\frac zi}}{1+\cfrac zi} \\ &= \frac1z e^{-\gamma z} \prod_{n=1}^\infty \frac{e^{\frac zn}}{1+\dfrac zn} \end{aligned} )] |
[math(\displaystyle \dfrac1{\Gamma(z)}=e^{\gamma z}z \prod_{n=1}^\infty\left(1+\dfrac zn\right)e^{-z/n})] |
5. 참고 문헌
- https://en.wikipedia.org/wiki/Weierstrass_factorization_theorem
- G. B. Arfken et al., Mathematical Method for Physicists : A Comprehensive Guide