최근 수정 시각 : 2025-02-02 11:29:18

과일 분수방정식 문제


[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
이론
기본 대상 연산 · 항등식(가비의 이 · 곱셈 공식(통분 · 약분) · 인수분해) · 부등식(절대부등식) · 방정식(/풀이 · (무연근 · 허근 · 비에트의 정리(근과 계수의 관계) · 제곱근(이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술(시계 산술)
수 체계 자연수(소수) · 정수(음수) · 유리수 · 실수(무리수(대수적 무리수 · 초월수) · 초실수) · 복소수(허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론 · 분해체
대수 가환대수 · 리 대수 · 불 대수(크로네커 델타)
마그마·반군·모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서(텐서곱) · 벡터 공간(선형사상) · 가군(module) · 내적 공간(그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론
대수 위상수학 연속변형성 · 사슬 복합체 · 호몰로지 대수학(호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류 · 호프대수
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론 실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 · 과일 분수방정식 문제 }}}}}}}}}

정수론
Number Theory
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
공리
페아노 공리계 · 정렬 원리 · 수학적 귀납법 · 아르키메데스 성질
산술
나눗셈 약수·배수 배수 · 약수(소인수) · 소인수분해(목록 · 알고리즘) · 공배수 · 공약수 · 최소공배수 · 최대공약수
약수들의 합에 따른 수의 분류 완전수 · 부족수 · 과잉수 · 친화수 · 사교수 · 혼약수 · 반완전수 · 불가촉 수 · 괴짜수
정리 베주 항등식 · 산술의 기본정리 · 나눗셈 정리
기타 유클리드 호제법 · 서로소
디오판토스 방정식 페르마의 마지막 정리 · 피타고라스 세 쌍 · 과일 분수방정식 문제 · 버치-스위너턴다이어 추측(미해결)
모듈러 연산
모듈러 역원 · 2차 잉여 · 기약잉여계 · 완전잉여계 · 중국인의 나머지 정리 · 합동식 · 페르마의 소정리 · 오일러 정리 · 윌슨의 정리
소수론
수의 분류 소수 · 합성수 · 메르센 소수 · 쌍둥이 소수(사촌 소수 · 섹시 소수) · 페르마 소수 · 레퓨닛 수
분야 대수적 정수론(국소체) · 해석적 정수론
산술함수 뫼비우스 함수 · 소수 계량 함수 · 소인수 계량 함수 · 약수 함수 · 오일러 파이 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 소수생성다항식
정리 그린 타오 정리 · 페르마의 두 제곱수 정리 · 디리클레 정리 · 소피 제르맹의 정리 · 리만 가설(미해결) · 골드바흐 추측(미해결)(천의 정리) · 폴리냑 추측(미해결) · 소수 정리
기타 에라토스테네스의 체 · 윌런스의 공식
}}}}}}}}} ||

1. 개요2. 해설3. 여담4. 관련 문서

1. 개요

파일:main-qimg-5b0690e302a38cf2a8068158199e7a21-c.jpg
[math(
\dfrac x{y+z} +\dfrac y{z+x} +\dfrac z{x+y} = 4 \qquad (x,y,z \in \N)
)]

인터넷에 돌아다니는 방정식 퀴즈 중 하나. SNS에 나도는 어이없는 "과일 문제"[1]들을 풍자하기 위해 만든 문제로, 미지수가 귀여운 과일 아이콘으로 되어 있어 마치 초등학생용 문제로 보이게끔 함정이 파여 있다.

원문에서는 MIT졸업생의 95%는 풀 수 없다는 문제였으나, 이 문제를 푼 수학자 Alon Amit는[2] 99.999995%의 사람들은 못 풀 거고, 그 중에서는 단지 정수론을 전공하지 않았을 뿐인 명문대 수학 교수도 포함될 것[3]이라고 했을 정도로 무진장 어려운 문제다.

2. 해설


Alon Amit의 과일 분수방정식 문제 해설

이 문제의 가장 작은 해는 자그마치 79, 80, 81자리나 되는 숫자. 덧붙여서 우변의 상수항 값이 클수록 해의 자릿수가 눈덩이처럼 불어난다는 사실까지 밝혀냈다. 가령 4 대신 178을 대입해봤더니 거의 4억에 육박하는 자릿수가 튀어나왔다고 한다. 다만 엄밀하게는 상수항이 커질수록 자릿수가 증가하는 것이 아니라 줄어들기도 한다.

Alon Amit이 제시한 해는 아래와 같다.
[math(\{x,\, y,\, z\} = \{ \\ \quad 4373612677928697257861252602371390152816537558161613618621437993378423467772036, \\ \quad 36875131794129999827197811565225474825492979968971970996283137471637224634055579, \\ \quad 154476802108746166441951315019919837485664325669565431700026634898253202035277999 \\ \})]
집합 기호로 쓴 이유는 윤환식이기 때문이다.

Alon Amit의 의견을 더 들어보면...
  • (디오판토스)일차방정식: 쉬움
  • 이차방정식: 완전히 이해된 수준으로 꽤나 기초적인 수준에서 해결 가능
  • 삼차방정식: 심오한 이론의 거대한 바다와 수백만 가지의 미해결 문제[4]
  • 사차 이상의 방정식: 정말... 정말로 어렵다.
즉, 삼차 이상으로 넘어가면 일반인 수준도 물론이고 석박사 전공자, 그 중에서도 디오판토스 방정식을 연구하는 입장에서마저 대부분 답이 없다는 뜻이다. 그리고 이 디오판토스 방정식은 삼차다. 더 나아가서, (원문의 수식을 가져오자면) 기쁘게도, 또는 끔찍하게도, 타원곡선의 형태다. 그래서 미해결 문제까진 아니지만, 해만 터무니없이 큰 게 아니라 풀이법[5]도 까다롭다.
[math(\dfrac{x}{y+z} + \dfrac{y}{z+x} + \dfrac{z}{x+y} = n \ \ (x, y, z \in \mathbb{N}))]
이 꼴의 방정식 형태와 풀이도 지금은 은퇴한 수학자인 Allan MacLeod가 겨우 몇 년 전에야 제시했고 Alon Amit이 본 것 가운데 가장 훌륭한 형태의 디오판토스 방정식이라고. [math(n)]이 홀수일 경우의 정수해는 없다고 한다.

3. 여담

[math(x)], [math(y)], [math(z)]가 0이 아닌 정수로 조건이 붙으면 [math(\{x,\, y,\, z\}=\{-1,\, 4,\, 11\})]로 간단한 답이 나온다.

4. 관련 문서



[1] 일명 Fruit math 밈. 미지수를 알록달록한 과일 그림으로 치환한 방정식 문제들로 약 2016년부터 페이스북 등을 중심으로 퍼져나갔다. 대다수는 일차연립방정식 수준의 간단한 문제임에도 불구하고 "오직 극소수의 사람들만이 이 문제를 풀 수 있다"나 "너무 어려워서 풀 수 없다"같은 문장들이 덤으로 달려 있다. 범람하고 있는 조악한 모바일 게임 광고들과 유사한 면이 있다.[2] 예루살렘 히브리 대학교 수학 박사로 에르되시 번호가 2이다.[3] Roughly 99.999995% of the people don’t stand a chance at solving it, and that includes a good number of mathematicians at leading universities who just don’t happen to be number theorists.[4] 즉, 버치-스위너턴다이어 추측 같은 문제가 수백만 개씩이나 있다는 뜻이다.[5] 타원곡선 교점을 찍고 치환식에 대입해 푸는 노가다9번이나 해야 한다.

파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r110에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r110 (이전 역사)
문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)