최근 수정 시각 : 2025-09-15 11:57:33

야코비안

Jacobian, 야코비안 또는 자코비안 [1]

1. 개요2. 좌표계 변환
2.1. 유도2.2. 예시
3. 연립 상미분방정식

1. 개요

카를 구스타프 야코프 야코비가 고안한 행렬. 일반적으로는 모든 독립변수가 모든 성분에 대해 미분가능한 다변수 벡터함수 [math(\mathbf{f}: \mathbb{R}^n \rarr \mathbb{R}^m)](단, [math(\mathbf{f} = (f_i ((x_j)_{j=1}^n)))_{i=1}^m)])의 편도함수를 각 성분에 따라 배치한 [math(m×n)] 행렬 [math(J)]를 의미하며, 이때 [math(J_{ij} = \dfrac{\partial f_i}{\partial x_j})]이다. 특히 학부 미적분학에서는 다변수 벡터함수가 차원이 서로 같은 유클리드 공간 사이에서 정의되기 때문에 야코비 행렬은 정사각행렬이 된다. 그래서 다중적분에서 다변수 치환적분을 해야 할 때 그 행렬식을 이용해 보정하는 좌표계 변환법으로 자주 사용된다. 이 때문인지 학부 미적분학에서는 '야코비 행렬식'을 야코비안으로 부르기도 한다.

2. 좌표계 변환

해석학·미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사(어림)
수열·급수 수열(규칙과 대응) · 급수(기하급수 · 조화급수 · 멱급수 · 테일러 급수(/목록) · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱 · 피보나치 수열
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수(이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분(/예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분(코시 주욧값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분 편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식 미분방정식(/풀이) · 라플라스 변환
실해석· 측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수(주부) · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · [math(C^*)]-대수 · 폰 노이만 대수
정리 바나흐-앨러오글루 정리 · 베르 범주 정리 · 스펙트럼 정리 · 한-바나흐 정리
이론 범함수 미적분학 · 디랙 델타 함수(분포이론)
조화해석 푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학(양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학(경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||


앞서 언급한 바와 같이 다중적분에서 미분소 [math({\rm d}A)], [math({\rm d}V)], [math({\rm d}S)] 등을 같은 차원의 좌표계로 변환하는 데에 야코비 행렬식이 사용된다. 좌표계마다 축의 방향과 눈금의 크기가 다르기 때문에, 좌표계 변환을 할 때 이를 보정해주어야 하는데, 이 보정하는 역할을 하는 것이 야코비안이다.

예를 들어, 면적분의 좌표계를 바꾸기 위해 [math((x,y))]로 표현되는 좌표를 [math((r,\theta))]로 바꿔줄 때 야코비안 [math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{vmatrix} \begin{aligned} \cos \theta \\ \sin \theta \end{aligned} & \begin{aligned} -r\sin \theta \\ r\cos \theta \end{aligned} \end{vmatrix} = r)]을 이용해
[math({\rm d}A = {\rm d}x \,{\rm d}y = |J| \,{\rm d}r \,{\rm d}\theta = r \,{\rm d}r \,{\rm d}\theta)]
로 바꿔주어 적분한다.

덧붙여 야코비안은 행렬식 안에 편미분이 들어가기 때문에 식 자체의 크기가 꽤 크다. 이를 간단하게 표기하기 위해서, 다음과 같은 표기법들을 사용하기도 한다.
[math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \left| \dfrac{\partial (x,\,y)}{\partial (r,\,\theta)}\right| )]
또는
[math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{pmatrix} x_r & x_{\theta} \\ y_r & y_{\theta} \end{pmatrix} )]

일반적으로는 [math(n)]개의 변수를 마찬가지로 [math(n)]개의 변수로 치환하기 때문에 [math(n)]차 정사각행렬의 행렬식의 형태를 띄게 되는데, 미분기하학 등의 분야에서는 변수를 줄여서 매개화를 시키는 경우에 한해서 정사각행렬이 아닌 야코비 행렬만을 따지기도 한다. 예를 들면 다음과 같은 경우가 있다.

사상 [math({\bf x}: D(\subseteq\mathbb R^2)\to\mathbb R^3)]가 다음과 같이 정의되어 있다고 하자.
[math({\bf x}(u,\,v)=(x(u,\,v),\,y(u,\,v),\,z(u,\,v)))]
즉, 벡터 [math(\bf x)]를 [math({\bf x}=(x,\,y,\,z))]라고 둘 때, [math((x,\,y,\,z))]를 2개의 매개변수 [math((u,\,v))]로 매개화를 시킨 상황이다.

이 경우, 이 사상은 벡터장에 의해 정의된 3차원상의 평면으로 나타나며, 이 사상의 야코비 행렬은 다음과 같이 표기한다.
[math(J=\dfrac{\partial (x,\,y,\,z)}{\partial (u,\,v)})]

이 행렬은 [math(J = \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial u} \\ \dfrac{\partial y}{\partial u} \\ \dfrac{\partial z}{\partial u} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial v} \\ \dfrac{\partial z}{\partial v} \end{aligned} \end{pmatrix})]의 [math(3\times2)] 행렬이 되는데, 당연히 행렬식을 구할 수는 없으니 의미가 없어보이지만, 이 행렬의 전치행렬에 3차원 좌표계의 기저벡터[math((U_1, U_2, U_3))]를 추가하여 행렬식을 구성. 즉 벡터로 변환하게 되면 다음과 같다.

[math(J^{T *} = \begin{vmatrix} \begin{aligned} U_1 \\ \dfrac{\partial x}{\partial u} \\ \dfrac{\partial x}{\partial v} \end{aligned} & \begin{aligned} U_2 \\ \dfrac{\partial y}{\partial u} \\ \dfrac{\partial y}{\partial v} \end{aligned} & \begin{aligned} U_3 \\ \dfrac{\partial z}{\partial u} \\ \dfrac{\partial z}{\partial v} \end{aligned} \end{vmatrix}=\left(\dfrac{\partial y}{\partial u}\dfrac{\partial z}{\partial v}-\dfrac{\partial z}{\partial u}\dfrac{\partial y}{\partial v},\,\dfrac{\partial z}{\partial u}\dfrac{\partial x}{\partial v}-\dfrac{\partial x}{\partial u}\dfrac{\partial z}{\partial v},\,\dfrac{\partial x}{\partial u}\dfrac{\partial y}{\partial v}-\dfrac{\partial y}{\partial u}\dfrac{\partial x}{\partial v}\right))]

그런데 이 벡터는 [math(\bf x)]를 [math(u)]와 [math(v)]로 편미분한 두 미분벡터 [math({\bf x}_u,\,{\bf x}_v)]의 외적과 정확히 일치한다. 이런 식으로 야코비안은 반드시 정사각행렬이 아니더라도 다양한 분야에서 사용된다.

2.1. 유도

벡터를 이용한 넓이 공식 및 다변수 함수의 전미분으로부터 유도할 수 있다.[2] 아래 예시는 2차원 직교좌표계에서 극좌표계로 변환하는 과정에서 야코비안을 유도하는 방법이다.

[math({\rm d}x)], [math({\rm d}y)]는 서로 독립이며 각각 [math(x)]축, [math(y)]축에 평행한 미소(smallness 또는 infinitesimals) 길이므로 단위 벡터 [math({\bf e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix})], [math({\bf e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix})]를 이용하여 나타내면 각각
[math(\begin{aligned} {\rm d}x {\bf e_1} &= {\bf dx} = \begin{pmatrix} {\rm d}x \\ 0 \end{pmatrix} \\ {\rm d}y {\bf e_2} &= {\bf dy} = \begin{pmatrix} 0 \\ {\rm d}y \end{pmatrix} \end{aligned})]
가 된다. 두 벡터를 변으로 삼는 평행사변형의 넓이는 각 벡터를 병합한 2차 정사각행렬의 행렬식[3]이므로 [math(xy)] 직교좌표계에서의 미소 평행사변형의 넓이는
[math(\begin{Vmatrix} {\bf dx} & {\bf dy} \end{Vmatrix} = \begin{Vmatrix} {\rm d}x & 0 \\ 0 & {\rm d}y \end{Vmatrix} = | {\rm d}x{\rm d}y |)]
로 주어진다.

한편 [math(x,\,y)]가 극좌표 매개변수 [math(r,\,\theta)]로 나타낼 수 있는 함수 [math(x(r,\,\theta))], [math(y(r,\, \theta))]라고 할 때 각각의 전미분 [math({\rm d}x,\,{\rm d}y)]는 다음과 같이 된다.
[math(\begin{aligned} {\rm d}x &= \frac{\partial x}{\partial r} {\rm d}r + \frac{\partial x}{\partial \theta} {\rm d}\theta \\ {\rm d}y &= \frac{\partial y}{\partial r} {\rm d}r + \frac{\partial y}{\partial \theta} {\rm d}\theta \end{aligned})]

[math(\mathrm dr)], [math(\mathrm d\theta)]도 서로 독립이며 [math(\mathrm dx)], [math(\mathrm dy)]처럼 벡터로 나타낼 수 있으므로 위 전미분 식의 미소 길이를 모두 벡터로 대체한다.
[math(\begin{aligned} {\bf dx} &= \dfrac{\partial x}{\partial r} {\bf dr} + \dfrac{\partial x}{\partial \theta} {\bf d}\boldsymbol\theta = \dfrac{\partial x}{\partial r} \begin{pmatrix} {\rm d}r \\ 0 \end{pmatrix} + \dfrac{\partial x}{\partial \theta} \begin{pmatrix} 0 \\ {\rm d}\theta \end{pmatrix} = \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r}{\rm d}r \\ \dfrac{\partial x}{\partial \theta}{\rm d}\theta \end{aligned} \end{pmatrix} \\ {\bf dy} &= \dfrac{\partial y}{\partial r} {\bf dr} + \dfrac{\partial y}{\partial \theta} {\bf d}\boldsymbol\theta = \dfrac{\partial y}{\partial r} \begin{pmatrix}{\rm d}r \\ 0 \end{pmatrix} + \dfrac{\partial y}{\partial \theta} \begin{pmatrix} 0 \\ {\rm d}\theta \end{pmatrix} = \begin{pmatrix} \begin{aligned} \dfrac{\partial y}{\partial r}{\rm d}r \\ \dfrac{\partial y}{\partial \theta}{\rm d}\theta \end{aligned} \end{pmatrix} \end{aligned})]
이제 이것을 행렬식에 대입하면 다음과 같다.
[math(\begin{Vmatrix} {\bf dx} & {\bf dy} \end{Vmatrix} = \begin{Vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r}{\rm d}r \\ \dfrac{\partial x}{\partial \theta}{\rm d}\theta \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r}{\rm d}r \\ \dfrac{\partial y}{\partial \theta}{\rm d}\theta \end{aligned} \end{Vmatrix} = \begin{Vmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \end{Vmatrix})]
행렬식은 전치를 해도 값이 같으므로 위 식 전체를 전치행렬로 계산하면 [math(({\bf AB})^{\rm T} = {\bf B}^{\rm T}{\bf A}^{\rm T})]를 이용해 다음과 같이 계산된다.
[math(\begin{aligned} \begin{Vmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \end{Vmatrix} &= \begin{Vmatrix} \left( \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \right)^\mathrm T \end{Vmatrix} = \begin{Vmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial\theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \end{Vmatrix} \\ &= \begin{Vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial\theta} \\ \dfrac{\partial y}{\partial\theta} \end{aligned} \end{Vmatrix} \begin{Vmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{Vmatrix} = |J| | {\rm d}r{\rm d}\theta | \end{aligned})]

일반적으로 [math({\rm d}x{\rm d}y)], [math({\rm d}r{\rm d}\theta)]가 양의 값이 되도록 좌표축을 잡으므로 그 결과는 아래와 같다.
[math({\rm d}x{\rm d}y = |J|{\rm d}r{\rm d}\theta)]

3차원 직교좌표계를 원통좌표계 및 구면좌표계로 변환하는 과정에서 얻어지는 야코비안도 같은 방법으로 유도할 수 있다. 성분이 많아지니 계산이 번거로워질 뿐이다.

2.2. 예시

  • 직교 좌표계 → 극좌표계로의 변환
    양수 [math(a)], [math(b)]에 대하여 [math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{vmatrix} x_r & x_{\theta} \\ y_r & y_{\theta} \end{vmatrix} )] 이므로
    [math(\begin{cases} \begin{aligned} x &= ar \cos \theta \\ y &= br \sin \theta \end{aligned} \end{cases})]에서
    [math(|J| = \begin{Vmatrix} a \cos \theta & -ar \sin \theta \\ b \sin \theta & br \cos \theta \end{Vmatrix} = ab|r|)]

    [math(r)]이 음수가 안 되도록 범위를 잡으면 [math(|J| = abr)]
    [math(a \ne b)] 일 때 타원이며 [math(a=b)]일 때 원. 두 경우 모두 [math(r)]의 범위가 [math(0 \le r \le 1)]로 주어지는 특징이 있다. 원에 한해서는 그냥 [math(a=b=1)]로 하고 반지름 [math(R)]에 대해 [math(r)]의 범위를 [math(0 \le r \le R)]로 잡아도 된다.
  • 공간 좌표계 → 원통 좌표계로의 변환
    [math(\begin{cases} \begin{aligned} x &= r \cos \theta \\ y &= r \sin \theta \\ z &= \zeta \end{aligned} \end{cases})]에서
    [math(|J| = \begin{Vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{Vmatrix} = |r|)]

    [math(xy)]평면에 평행한 단면이 타원일 경우 역시 위의 값에 [math(ab)]를 곱한다. [math(r)]이 음수가 안 되도록 범위를 잡으면 절댓값 기호를 그냥 벗길 수 있다.
  • 공간 좌표계 → 구좌표계로의 변환
    [math(\begin{cases} \begin{aligned} x &= r \sin \theta \cos \phi \\ y &= r \sin \theta \sin \phi \\ z &= r \cos \theta \end{aligned} \end{cases})]에서
    [math(|J| = \begin{Vmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{Vmatrix} = {\left| r^2 \sin \theta \right|} = r^2 | \sin \theta| )]

    [math(\sin \theta)]값이 음수가 안 되도록 범위를 잡으면[4] 절댓값 기호를 그냥 벗길 수 있다.
  • 타원이나 마름모꼴에서
    [math(\begin{cases} \begin{aligned} u &= x+y \\ v &= x-y \end{aligned} \end{cases} \Leftrightarrow \begin{cases} \begin{aligned} x &= \dfrac{u+v}2 \\ y &= \dfrac{u-v}2 \end{aligned} \end{cases})]에서
    [math(|J| = \begin{Vmatrix} \begin{aligned} \dfrac 12 \\ \dfrac 12 \end{aligned} & \begin{aligned} \dfrac 12 \\ -\dfrac 12 \end{aligned} \end{Vmatrix} = \left| -\dfrac 12 \right| = \dfrac 12)]

    또는
    [math(\begin{cases} \begin{aligned} u &= 2x-y \\ v &= y \end{aligned} \end{cases} \Leftrightarrow \begin{cases} \begin{aligned} x &= \dfrac{u+v}2 \\ y &= v \end{aligned} \end{cases})]에서
    [math(|J| = \begin{Vmatrix} \dfrac 12 & \dfrac 12 \\ \\ 0 & 1 \end{Vmatrix} = \dfrac 12)]

3. 연립 상미분방정식

선형대수학
Linear Algebra
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#006ab8> 대수학
기본 대상 일차함수 · 벡터 · 행렬 · 선형 변환
대수적 구조 가군(모듈) · 벡터 공간 · 내적 공간 · 노름 공간
선형 연산자 <colbgcolor=#006ab8> 기본 개념 연립방정식(1차 · 2차) · 행렬곱 · 단위행렬 · 역행렬크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식(라플라스 전개) · 주대각합
선형 시스템 기본행연산기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법
주요 정리 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리
기타 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 · 노름(수학) · 벡터장
벡터공간의 분해 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화(대각행렬) · 삼각화 · 조르당 분해
벡터의 연산 노름 · 거리함수 · 내적 · 외적(신발끈 공식) · 다중선형형식 · · 크로네커 델타
내적공간 그람-슈미트 과정 · 수반 연산자(에르미트 내적)
다중선형대수 텐서 · 텐서곱 · 레비치비타 기호 }}}}}}}}}


연립 상미분방정식(system of ODE)에서도 야코비안을 사용할 수 있다. 비동차 상미분방정식(non-homogeneous ODE)의 임계점(critical point) 근처에서 그 거동을 알아보기 위해, 비동차항을 행렬로 근사하여 선형성을 부여한 뒤 값을 대입하여 해 곡선(solution curve)의 개형을 알아본다. [math(n)]원 일차연립방정식에서는 [math(n×n)] 야코비 행렬이 쓰인다. 기계 학습 등에서 다변수 함수의 기울기를 담고 있어서 실생활의 최적화 문제를 수식으로 정리하는데 도움이 되는 편이라, 의외로 자주 접하게 되는 표현.

임계점 근방에서 [math(x'(t), y'(t))]가 잘 정의될 때, 2차원 연립 상미분방정식이 아래와 같이 주어져 있다고 하자. 단, 임계점에서 [math(f, g)]의 함숫값은 0이다.

[math(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f(x, y) \\ g(x, y) \end{pmatrix})]

이 연립 상미분방정식을 선형화하기 위해 야코비 행렬을 사용하자. 임계점 근방에서 [math(x'(t))]와 [math(y'(t))]는 다음과 같이 선형 근사된다.
[math( \begin{pmatrix} x' \\ y' \end{pmatrix} \approx J \begin{pmatrix} x \\ y \end{pmatrix})]
여기서 야코비 행렬은 [math( J = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix})]이다.[5]

이 식에서 [math(x(t))]와 [math(y(t))]는 임계점 근처에서의 값, [math(J)]는 원 미분방정식을 선형화한 새로운 연립 상미분방정식의 동적 거동을 표현한다.

마지막으로, 비동차항을 고려하면 다음과 같은 형태로 정리할 수 있다.

[math(\begin{pmatrix} x' \\ y' \end{pmatrix} = J \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} h_1(t) \\ h_2(t) \end{pmatrix})]

여기서 [math( \begin{pmatrix} h_1(t) \\ h_2(t) \end{pmatrix} )]는 시간 t에 따라 변하는 비동차항이 된다.


[1] 이 개념의 창안자 야코비가 독일인이라 J를 반모음 [j\]로 읽는 독일어식 독음을 따와 '야코비안'이라는 표기법이 사용된다. 다만 -ian이라는 데모님을 붙이는 것은 영어식 표현이므로 입말로는 J를 [d͡ʒ\]로 읽는 영어식 독법을 따라 '자코비안'이라고 하기도 한다. 독일어로는 Jacobi-Matrix가 주류지만 Jacobian에 대응하는 Jacobische가 종종 사용되기도 한다.[2] 엄밀하게는 미분형식에 대해 크라메르 공식을 이용하는 방식을 이용한다. [math(x, y)] 쌍과 [math(u, v)] 쌍이 서로 독립적이기 때문에 각각의 1-형식인 [math({\rm d}x, {\rm d}y)]와 [math({\rm d}u, {\rm d}v)]가 각각에 대해 독립적이 되는지라 선형대수를 접목시킬 수 있고, 그 결과가 야코비안으로 나오는 것.[3] 정확히는 두 벡터의 외적으로 얻어진 벡터의 크기인데 이를 라플라스 전개로 분해하면 이렇게 된다.[4] 보통 두 각의 범위를 [math(0 \le \theta \le \pi)], [math(0 \le \phi \le 2\pi)]로 잡는 것도 이 때문이다.[5] 테일러 전개 시 고차항(higher-order term)을 생략하고 1차 근사만 남긴다는 의미로 [math(\approx)]를 사용했다. 다시 말하면, 정확한 평형점에서의 값 +1차 미분으로만 선형화한다는 뜻.