1. 개요
베르누이 數列 / Bernoulli numbers / (프랑스어)Nombre de Bernoulli음이 아닌 정수 [math(n)]에 대해 [math(B_n)]으로 나타내어지는 수열이다.
2. 상세
이 수열 자체에 대해서는 그다지 많이 알려지지 않았지만 [math(\tan x)], [math(\cot x)], [math(\tanh x)], [math(\coth x)] 등 다수의 삼각함수, 쌍곡선 함수의 테일러 급수에 [math(B_{2n})]이라는 형태로 자리를 차지하고 있어 미친 존재감을 자랑한다. [math(B_n)]이 아닌 [math(B_{2n})]을 쓰는 이유는 [math(B_{2n+1} = 0~ (n\ge1))], 즉 제3항 이상의 홀수항이 모조리 [math(\bf0)]이라는 독특한 성질이 있기 때문이다.[1] 제1항에 대해서도 간혹 [math(B_1 = \dfrac12)]이라 나타내는 문헌이 존재하는데, 그 이유는 해당 문헌에서는 베르누이 수열을 [math((-1)^nB_n)]으로 정의하기 때문이다.[2] 혼동을 피하기 위해 일반적인 베르누이 수열을 [math(B^-_n)]로, [math((-1)^n)]을 곱한 베르누이 수열을 [math(B^+_n)]로 표기하기도 한다. 즉, [math(B^+_n = (-1)^n B^-_n = (-1)^n B_n)]이다. 제18항까지의 값은 다음과 같다.[math(n)] | [math(0)] | [math(1)] | [math(2)] | [math(3)] | [math(4)] | [math(5)] | [math(6)] | [math(7)] | [math(8)] | [math(9)] | [math(10)] | [math(11)] | [math(12)] | [math(13)] | [math(14)] | [math(15)] | [math(16)] | [math(17)] | [math(18)] |
[math(B_n)] | [math(1)] | [math(-\dfrac12)] | [math(\dfrac16)] | [math(0)] | [math(-\dfrac1{30})] | [math(0)] | [math(\dfrac1{42})] | [math(0)] | [math(-\dfrac1{30})] | [math(0)] | [math(\dfrac5{66})] | [math(0)] | [math(-\dfrac{691}{2730})] | [math(0)] | [math(\dfrac76)] | [math(0)] | [math(-\dfrac{3617}{510})] | [math(0)] | [math(\dfrac{43867}{798})] |
[math(B^+_n)] | [math(\dfrac12)] |
3. 역사
역사적으로는 다음과 같은 거듭제곱 합의 계수에 대한 연구에서 시작되었다.[math(\displaystyle \begin{aligned} \sum_{k=1}^n k &= \frac12 n^2 + \frac12 n \\ \sum_{k=1}^n k^2 &= \frac13 n^3 + \frac12 n^2 + \frac16 n \\ \sum_{k=1}^n k^3 &= \frac14 n^4 + \frac12 n^3 + \frac14 n^2 \\ \sum_{k=1}^n k^4 &= \frac15 n^5 + \frac12 n^4 + \frac13 n^3 - \frac1{30} n \\ \sum_{k=1}^n k^5 &= \frac16 n^6 + \frac12 n^5 + \frac5{12} n^4 - \frac1{12} n^2 \end{aligned} )] |
이와는 별개로 일본의 세키 다카카즈가 그의 저서 《괄요산법》(括要算法, 1712)에서 [math(n=12)]까지에 대해 구체적인 값을 제시하였으나 일반식을 제시한 건 아니기에 수열 이름에 포함될 정도의 업적으로 보지는 않는 듯하다.[4]
4. 정의
다음 생성함수를 이용하여 정의된다.[math(\begin{aligned} \frac x{e^x-1} = \frac x2 \biggl( \coth \frac x2 -1 \biggr) &= 1 -\frac12x + \frac1{12}x^2 + \cdots \\ = \sum_{n=0}^\infty \frac{B_n}{n!}x^n &= B_0 + B_1x + \frac{B_2}2x^2 + \cdots \end{aligned})] |
[math(\begin{aligned} \frac x{e^x-1} +x = \frac{xe^x}{e^x-1} = \frac x2 \biggl( \coth \frac x2+1 \biggr) &= 1 +\frac12x + \frac1{12}x^2 + \cdots \\ = \sum_{n=0}^\infty \frac{B_n^+}{n!}x^n &= B_0 + B_1^+x + \frac{B_2}2x^2 + \cdots \end{aligned} )] |
[math(\begin{aligned} \sum_{n=0}^\infty \frac{B_n}{n!}(-x)^n &= \sum_{n=0}^\infty\frac{\color{red}(-1)^nB_n}{n!}x^n \\ &= \frac{-x}{e^{-x}-1} = \frac x{1-e^{-x}} = \frac{xe^x}{e^x-1} \\ &= -\frac x2 \biggl\{ \coth \biggl(-\frac x2\biggr) -1 \biggr\} = \frac x2 \biggl(\coth\frac x2 +1 \biggr) \\ &= \sum_{n=0}^\infty\frac{\color{blue}B_n^+}{n!}x^n \end{aligned})] |
[math(B_n)]의 값을 구할 때는, 물론 위 식들을 직접 [math(n)]번 미분하고 [math(x=0)]을 대입하는 미친짓(……)으로 값을 계산하진 않고, 각 식의 역수들이 테일러 급수식으로 용이하게 나타낼 수 있다는 점을 이용해서 점화식을 유도하여 계산하는 것이 일반적이다. [math(B_n)]에 관한 식에서 양변에
[math(\displaystyle \begin{aligned} \frac{e^x -1}x &= \frac1x \Biggl(\sum_{n=0}^\infty \frac{x^n}{n!} -1 \Biggr) = \frac1x \sum_{n=1}^\infty \frac{x^n}{n!} = \sum_{n=1}^\infty \frac{x^{n-1}}{n!} = \sum_{n=0}^\infty \frac{x^n}{(n+1)!} \\ &= 1 +\frac x{2!} +\frac{x^2}{3!} +\frac{x^3}{4!} +\cdots \end{aligned} )] |
[math(\displaystyle \begin{aligned} 1 = \frac x{e^x -1} \cdot \frac{e^x -1}x &= \sum_{n=0}^\infty \frac{B_n}{n!}x^n \cdot \sum_{n=0}^\infty \frac{x^n}{(n+1)!} \\ &= \!\left( B_0 +\frac{B_1}{1!}x +\frac{B_2}{2!}x^2 +\frac{B_3}{3!}x^3 + \cdots \right) \!\left( 1 +\frac x{2!} +\frac{x^2}{3!} +\frac{x^3}{4!} + \cdots \right) \\ &= \sum_{n=0}^\infty \sum_{r=0}^n \frac{B_rx^r}{r!} \frac{x^{n-r}}{(n-r+1)!} = \sum_{n=0}^\infty \sum_{r=0}^n \frac{B_r x^n}{r!(n-r+1)!} = \sum_{n=0}^\infty \sum_{r=0}^n \frac{(n+1)!}{r!(n-r+1)!} \frac{B_r x^n}{(n+1)!} \\ &= \sum_{n=0}^\infty \frac1{(n+1)!} \sum_{r=0}^n \!\binom{n+1}r B_rx^n \\ &= B_0 +\frac1{2!} \sum_{r=0}^1 \!\binom2r B_rx +\frac1{3!} \sum_{r=0}^2 \!\binom3r B_rx^2 +\frac1{4!} \sum_{r=0}^3 \!\binom4r B_rx^3 + \cdots \end{aligned} )] |
[math(\displaystyle \begin{aligned} \sum_{r=0}^n \!\binom{n+1}r B_r &= \sum_{r=0}^{n-1} \!\binom{n+1}r B_r +(n+1)B_n = \delta_{0,\,n} \\ \therefore B_n &= \delta_{0,\,n} - \frac1{n+1} \sum_{r=0}^{n-1} \!\binom{n+1}r B_r \end{aligned} )] |
한편, [math(\coth x)]는 정의에 따라 다음과 같이 나타내어지는데, 바로 위의 생성함수를 이용하여 표현할 수 있다.
[math(\displaystyle \begin{aligned} \coth x &= \frac{\cosh x}{\sinh x} = \frac{\dfrac{e^x + e^{-x}}2}{\dfrac{e^x - e^{-x}}2} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x}+1}{e^{2x}-1} = 1+\frac2{e^{2x}-1} = 1+\frac1x \frac{2x}{e^{2x}-1} \\ &= 1 +\frac1x \sum_{n=0}^\infty \frac{B_n}{n!} (2x)^n \\ &= 1 +\sum_{n=0}^\infty \frac{2^n B_n}{n!} x^{n-1} \end{aligned} )] |
[math(\displaystyle\begin{aligned} \coth ix &= 1 + \sum_{n=0}^\infty \frac{2^nB_n}{n!}(ix)^{n-1} = 1 + 2\sum_{n=0}^\infty \frac{(2i)^{n-1}B_n}{n!}x^{n-1} \\ &= 1 + 2 \left\{ \sum_{n=0}^\infty \frac{(2i)^{2n-1}B_{2n}}{(2n)!}x^{2n-1} + \sum_{n=0}^\infty \frac{(2i)^{2n}B_{2n+1}}{(2n+1)!}x^{2n} \right\} \\ &= \left\{ 1 + 2\sum_{n=0}^\infty \frac{(-4)^nB_{2n+1}}{(2n+1)!}x^{2n} \right\} - i\left\{ \sum_{n=0}^\infty \frac{(-4)^nB_{2n}}{(2n)!}x^{2n-1} \right\} \\ &= -i\cot x \end{aligned})] |
[math(\displaystyle1 + 2\sum_{n=0}^\infty \frac{(-4)^nB_{2n+1}}{(2n+1)!}x^{2n} = 1 + 2B_1 + \sum_{n=1}^\infty \frac{(-4)^nB_{2n+1}}{(2n+1)!}x^{2n} = 0)] |
이 사실을 이용하면, 전술했던 베르누이 수열의 점화식도 다음과 같이 축약시킬 수 있게 된다.
[math(\displaystyle\begin{aligned} B_{2n} &= \delta_{0,\,n} - \frac1{2n+1} \sum_{r=0}^{2n-1} \binom{2n+1}rB_r = \delta_{0,\,n} + \frac12(1 - \delta_{0,\,n}) - \frac1{2n+1} \sum_{r=0}^{n-1} \binom{2n+1}{2r}B_{2r} \\ &= \frac{1 + \delta_{0,\,n}}2 - \frac1{2n+1} \sum_{r=0}^{n-1} \binom{2n+1}{2r}B_{2r} \end{aligned})] |
[math(\displaystyle\therefore B_n \begin{cases} \begin{aligned} B_{2n} &= \frac{1 + \delta_{0,\,n}}2 - \frac1{2n+1} \sum_{r=0}^{n-1} \binom{2n+1}{2r}B_{2r} \\ B_{2n+1} &= -\frac12\delta_{0,\,n} \end{aligned} \end{cases})] |
4.1. 일반항
베르누이 수열의 일반항은 아래와 같다.[math(\displaystyle B_n = \sum_{k=0}^n \frac1{k+1} \sum_{r=0}^k \binom kr(-1)^rr^n)] |
[math(\displaystyle B_n = \sum_{k=0}^n \frac{k!(-1)^k}{k+1} S(n,\,k))] |
- [math(\displaystyle\frac x{1 - e^{-x}} = \sum_{n=0}^\infty B_n^+\frac{x^n}{n!} = \sum_{n=0}^\infty (-1)^nB_n\frac{x^n}{n!})]에서 [math(1 - e^{-x} = t)]로 치환하면 [math(x = -\ln(1-t))]가 되는데 [math(x>0)]일 때, [math(0<t<1)]이므로 해당 식에 대해 매클로린 급수를 적용할 수 있다. 따라서 다음 식이 얻어진다.
[math(\displaystyle\begin{aligned} \frac x{1 - e^{-x}} &= \frac{-\ln(1 - t)}t = \frac1t \int \frac{{\rm d}t}{1-t} = \frac 1t \int \sum_{k=0}^\infty t^k\,{\rm d}t = \frac1t \sum_{k=0}^\infty \frac{t^{k+1}}{k+1} = \sum_{k=0}^\infty \frac{t^k}{k+1} \\ &= \sum_{k=0}^\infty \frac{(1 - e^{-x})^k}{k+1} = \sum_{k=0}^\infty \frac{(e^{-x} - 1)^k}{k!} \frac{k!(-1)^k}{k+1} \end{aligned})]
[math(\dfrac{(e^{-x} - 1)^k}{k!})]는 제2종 스털링 수의 생성함수이므로 생성함수 식으로 바꾼 뒤 일반항을 대입한다.[math(\displaystyle \begin{aligned} \frac x{1 - e^{-x}} &= {\color{blue}\sum_{n=0}^\infty (-1)^n}{\color{red}B_n}{\color{blue}\frac{x^n}{n!}} \\ &= \sum_{k=0}^\infty \frac{(e^{-x} - 1)^k}{k!} \frac{k!(-1)^k}{k+1} = \sum_{k=0}^\infty \sum_{n=0}^\infty \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{(-x)^n}{n!} \frac{k!(-1)^k}{k+1} = \sum_{n=0}^\infty \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{(-x)^n}{n!} \frac{k!(-1)^k}{k+1} \\ &= \sum_{n=0}^\infty (-1)^n \left\{ \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{ k!(-1)^k}{k+1} \right\} \frac{x^n}{n!} \\ &= \sum_{n=0}^\infty (-1)^n \left\{ \sum_{k=0}^n \frac 1{\cancel{k!}} \sum_{r=0}^k \binom kr(-1)^{k-r} r^n \frac{\cancel{k!}(-1)^k}{k+1} \right\} \frac{x^n}{n!} \\ &= {\color{blue}\sum_{n=0}^\infty (-1)^n}{\color{red}\left\{ \sum_{k=0}^n \frac1{k+1} \sum_{r=0}^k \binom kr(-1)^rr^n \right\}}{\color{blue}\frac{x^n}{n!}} \end{aligned} \\ \therefore B_n = \sum_{k=0}^n \frac 1{k+1} \sum_{r=0}^k \binom kr(-1)^rr^n)] - [math(\displaystyle\frac x{e^x - 1} = \sum_{n=0}^\infty B_n\frac{x^n}{n!})]에서 [math(e^x - 1 = t)]로 치환하면 [math(x = \ln(1+t))]가 되는데 [math(x<0)]일 때, [math(-1<t<0)]이므로 마찬가지로 매클로린 급수를 적용한다.
[math(\displaystyle\begin{aligned} \frac x{e^x - 1} &= {\color{blue}\sum_{n=0}^\infty}{\color{red}B_n}{\color{blue}\frac{x^n}{n!}} \\ &= \frac{\ln(1+t)}t = \frac1t \int \frac{{\rm d}t}{1+t} = \frac1t \int \sum_{k=0}^\infty (-t)^k\,{\rm d}t = \frac1t \sum_{k=0}^\infty \frac{(-1)^kt^{k+1}}{k+1} = \sum_{k=0}^\infty t^k\frac{(-1)^k}{k+1} \\ &= \sum_{k=0}^\infty (e^x - 1)^k\frac{(-1)^k}{k+1} = \sum_{k=0}^\infty \frac{(e^x - 1)^k}{k!} \frac{k!(-1)^k}{k+1} \\ &= \sum_{k=0}^\infty \sum_{n=0}^\infty \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{x^n}{n!} \frac{k!(-1)^k}{k+1} = \sum_{n=0}^\infty \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{x^n}{n!} \frac{k!(-1)^k}{k+1} \\ &= \sum_{n=0}^\infty \left\{ \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{k!(-1)^k}{k+1} \right\} \frac{x^n}{n!} \\ &= \sum_{n=0}^\infty \left\{ \sum_{k=0}^n \frac1{\cancel{k!}} \sum_{r=0}^k \binom kr(-1)^{k-r}r^n \frac{\cancel{k!}(-1)^k}{k+1} \right\} \frac{x^n}{n!} \\ &= {\color{blue}\sum_{n=0}^\infty}{\color{red}\left\{\sum_{k=0}^n \frac1{k+1} \sum_{r=0}^k \binom kr(-1)^rr^n \right\}}{\color{blue}\frac{x^n}{n!}} \end{aligned} \\ \therefore B_n = \sum_{k=0}^n \frac1{k+1} \sum_{r=0}^k \binom kr(-1)^rr^n)]
[math(B_n^+)]의 경우, 생성함수식 [math(\displaystyle \frac x{1 - e^{-x}} = \sum_{n=0}^\infty B^+_n \frac{x^n}{n!})]에서 좌변의 식은 [math(\dfrac x{e^x -1}e^x)]와 같다. 즉, 같은 방식으로 식을 전개해나가면 제2종 스털링 수의 생성함수 식이 [math(\dfrac{e^x(e^x - 1)^k}{k!})]로 주어지고 [math(\displaystyle \frac{e^x(e^x - 1)^k}{k!} = \sum_{n=0}^\infty \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix} \frac{x^n}{n!})]이므로 다음과 같은 식이 얻어진다.
[math(\displaystyle\begin{aligned} B^+_n &= \sum_{k=0}^n \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix} \frac{k!(-1)^k}{k+1} \\ &=\sum_{k=0}^n \frac1{k+1} \sum_{r=0}^k \binom kr(-1)^r(r+1)^n \end{aligned})] |
5. 성질
|
상기 점화식을 구하는 과정에서 유도된 것이다. [math(\delta_{n,\,0})]는 크로네커 델타로 [math(\delta_{n,\,m} = \begin{cases} 1~(n=m) \\ 0~(n \ne m) \end{cases})]를 만족하는 함수이다.
|
파울하버의 공식 [math(\displaystyle \sum_{k=1}^n k^c = \sum_{n=0}^c \frac{(-1)^k}{c+1} \binom{c+1}kB_kn^{n+1-k})]에서 [math(n=1)]을 대입하고 [math(B^+_n = (-1)^nB_n)]를 이용하면 된다.
두 식을 더하면 베르누이 수열의 짝수 항만 남고 좌변이 2배가 되므로
로 간략화할 수 있다. [math(\lfloor \cdot \rfloor)]는 바닥 함수이다.
두 식을 더하면 베르누이 수열의 짝수 항만 남고 좌변이 2배가 되므로
[math(\displaystyle\sum_{k=0}^{\left\lfloor{\frac n2}\right\rfloor} \binom{n+1}{2k}B_{2k} = \frac{n+1 + \delta_{n,\,0}}2)] |
6. 이용
주로 테일러 급수에서 많이 쓰이고, 전술한대로 거듭제곱 합의 공식에도 쓰인다. 오일러-매클로린 공식에서도 쓰인다. 아래 목록에 없는 [math(\sec x)]와 [math({\rm sech}\, x)]는 오일러 수열을 이용해서 표현한다. 베르누이 수열이 오일러 수열과 서로 합연산[6] 관계에 있기는 하나(후술) 이걸 이용해서 두 급수를 표현하려면 식이 엄청 복잡해진다.
|
파울하버의 공식이라고 한다. 식의 유도 과정은 해당 문서 참고.
|
[math(\cot x - \tan x = \dfrac{\cos x}{\sin x} - \dfrac{\sin x}{\cos x} = \dfrac{\cos^2x - \sin^2x}{\sin x\cos x} = \dfrac{\cos2x}{\dfrac12\sin2x} = 2\cot2x)]에서 [math(\tan x = \cot x - 2\cot 2x)]라는 관계를 유도할 수 있어 위의 식이 자연스럽게 얻어진다.
|
[math(\dfrac12(\tan x + \cot x) = \dfrac12\left(\dfrac{\cos x}{\sin x} + \dfrac{\sin x}{\cos x}\right) = \dfrac{\cos^2x + \sin^2x}{2\sin x\cos x} = \dfrac1{\sin2x} = \csc 2x)]에서 [math(\csc x = \dfrac12\left(\tan\dfrac x2 + \cot\dfrac x2\right))]를 이용하면 된다.
|
위에서 유도한 식의 형태와 조금 다른데, 베르누이 수열에서 [math(3)] 이상의 홀수 항이 [math(0)]이 된다는 점을 적용해서 간략화시킨 형태이기 때문이다. [math(\coth x = i\cot ix)]를 이용해서도 유도할 수 있다.
|
[math(\tanh x = -i \tan ix)]를 이용해서 유도할 수 있다.
|
[math({\rm csch}\,x = i \csc ix)]를 이용해서 유도할 수 있다.
7. 오일러 수열과의 관계
삼각함수 및 쌍곡선 함수가 각종 사칙연산을 통해 서로 연관되어있기 때문에, 베르누이 수열과 오일러 수열 역시 서로 무관하지는 않다. 다만, 아무래도 각 함수의 곱(즉, 테일러 급수끼리의 곱)이 반드시 포함되어 있기에 서로 합연산의 관계에 있어서 손계산이 그렇게 간단한 형태로 나오지는 않는다. 차라리 서로 점화식의 관계에 있다고 이해하는 편이 빠를 것이다.7.1. 오일러 수열을 이용한 베르누이 수 표현
[math(\operatorname{sech} x \sinh x = \tanh x)]이므로[math(\displaystyle \begin{aligned} \left\{ \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!} x^{2n} \right\} \!\left\{ \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \right\} \!&= {\color{blue} \sum_{n=1}^\infty} {\color{red} \frac{(16^n - 4^n)B_{2n}}{(2n)!}} {\color{blue} x^{2n-1}} \\ \sum_{n=0}^\infty \sum_{r=0}^n \frac{E_{2r}x^{2r}}{(2r)!} \frac{x^{2n-2r+1}}{(2n-2r+1)!} &= \sum_{n=0}^\infty \sum_{r=0}^n \frac1{(2n+1)!} \frac{(2n+1)! \cdot E_{2r}}{(2r)! \cdot (2n-2r+1)!}x^{2n+1} = \sum_{n=0}^\infty \sum_{r=0}^n \frac1{(2n+1)!} \binom{2n+1}{2r} E_{2r} x^{2n+1} \\ &= {\color{blue} \sum_{n=1}^\infty} {\color{red} \sum_{r=0}^{n-1} \frac1{(2n-1)!} \binom{2n-1}{2r} E_{2r}} {\color{blue} x^{2n-1}} \\ \Rightarrow \frac{(16^n - 4^n)B_{2n}}{(2n)!} &= \sum_{r=0}^{n-1} \frac1{(2n-1)!} \binom{2n-1}{2r} E_{2r} \\ \therefore B_{2n} &= \frac{2n}{16^n - 4^n} \sum_{r=0}^{n-1} \binom{2n-1}{2r} E_{2r} \end{aligned} )] |
7.2. 베르누이 수열을 이용한 오일러 수열 표현
[math(\cosh x - \sinh x \tanh x = \operatorname{sech}x)]이므로, [math(\sinh x\tanh x)]부분에 대해[math(\displaystyle \begin{aligned} &\left\{ \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \right\} \!\left\{\sum_{n=1}^\infty \frac{(16^n-4^n)B_{2n}}{(2n)!} x^{2n-1} \right\} \\ =& \sum_{n=1}^\infty \sum_{r=1}^n \frac{(16^r-4^r)B_{2r}x^{2r-1}}{(2r)!} \frac{x^{2n-2r+1}}{(2n-2r+1)!} = \sum_{n=1}^\infty \sum_{r=1}^n \frac{16^r-4^r}{(2n+1)!} \frac{(2n+1)! \cdot B_{2r}}{(2r)! \cdot (2n-2r+1)!} x^{2n} \\ =& \sum_{n=1}^\infty \frac1{(2n+1)!} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r} B_{2r} x^{2n} \end{aligned} )] |
[math(\displaystyle \begin{aligned} &\cosh x - \sinh x \tanh x = \operatorname{sech}x \\ =& \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!} - \left\{ \sum_{n=1}^\infty \frac1{(2n+1)!} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r} B_{2r} x^{2n} \right\} \!= \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!} x^{2n} = {\color{blue} 1 +\sum_{n=1}^\infty} {\color{red} \frac{E_{2n}}{(2n)!}} {\color{blue} x^{2n}} \\ =& \,1 +\sum_{n=1}^\infty \frac1{(2n)!} x^{2n} - \left\{ \sum_{n=1}^\infty \frac1{(2n+1)!} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r} B_{2r} \!\right\} \!x^{2n} \\ =& {\color{blue} \,1 +\sum_{n=1}^\infty} {\color{red} \left\{ \!\frac1{(2n)!} -\frac1{(2n+1)!} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r} B_{2r} \!\right\}} {\color{blue} x^{2n}} \end{aligned} )] |
[math(\displaystyle \frac1{(2n)!} -\frac1{(2n+1)!} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r}B_{2r} = \frac{E_{2n}}{(2n)!} \\ \therefore E_{2n} = 1 -\frac1{2n+1} \sum_{r=1}^n (16^r-4^r) \binom{2n+1}{2r} B_{2r} )] |
[math(\displaystyle E_{2n} = 1 +\frac1{2n+1} \sum_{r=0}^n (4^r-16^r) \binom{2n+1}{2r} B_{2r} )] |
[math( \dfrac1{2n+1} \dbinom{2n+1}{2r} = \dfrac1{(2n+1)} \dfrac{(2n+1)!}{(2r)! \cdot (2n-2r+1)!} = \dfrac{(2n)!}{(2r)! \cdot (2n-2r+1)(2n-2r)!} = \dfrac1{2n-2r+1} \dbinom{2n}{2r} )] |
[math(\displaystyle E_{2n} = 1 +\sum_{r=0}^n \frac{4^r-16^r}{2n-2r+1} \binom{2n}{2r} B_{2r} )] |
8. 제타 함수와의 관계
[math(\displaystyle \zeta(-n) = \frac{(-1)^n}{n+1}B_{n+1})] |
베르누이 수열에서 제3항 이상의 홀수항이 모조리 0으로 나타나기 때문에, 자연스레 제타 함수에 0이 아닌 짝수 음수를 넣을 시 0이 된다.[7]
9. 베르누이 다항식
생성함수를 이용한 베르누이 수열의 정의를 다시 곱씹어보자.[math(\displaystyle \begin{aligned}
\frac t{e^t-1} &= \sum_{n=0}^\infty B_n \frac{t^n}{n!} \\
\frac{te^t}{e^t-1} &= \sum_{n=0}^\infty B_n^+ \frac{t^n}{n!}
\end{aligned} )]
베르누이 다항식은 위의 2번째 식과 비슷하지만 조금 다른, 다음과 같은 생성함수를 이용하여 정의된다. (단, [math(|t|<2\pi)])
[math(\displaystyle \begin{aligned}
\frac{te^{xt}}{e^t-1} = \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}
\end{aligned} )]
아래의 유도 과정을 따라가보면 베르누이 다항식은 다음과 같이 베르누이 수열로 이루어진 다항식임을 알 수 있다.
[math(\displaystyle \begin{aligned}
B_n(x) = \sum_{k=0}^n \!\binom nk B_k x^{n-k}
\end{aligned} )]
|
===# 예시 #===
[math(n=10)]까지에 대한 베르누이 다항식은 아래와 같다.
|| [math(n)] || [math(B_n(x))] ||
[math(0)] | [math(1)] |
[math(1)] | [math(x -\dfrac12)] |
[math(2)] | [math(x^2 -x +\dfrac16)] |
[math(3)] | [math(x^3 -\dfrac32x^2 +\dfrac12x)] |
[math(4)] | [math(x^4 -2x^3 +x^2 -\dfrac1{30})] |
[math(5)] | [math(x^5 -\dfrac52x^4 +\dfrac53x^3 -\dfrac16x)] |
[math(6)] | [math(x^6 -3x^5 +\dfrac52x^4 -\dfrac12x^2 +\dfrac1{42})] |
[math(7)] | [math(x^7 -\dfrac72x^6 +\dfrac72x^5 -\dfrac76x^3 +\dfrac16x)] |
[math(8)] | [math(x^8 -4x^7 +\dfrac{14}3x^6 -\dfrac73x^4 +\dfrac23x^2 -\dfrac1{30})] |
[math(9)] | [math(x^9 -\dfrac92x^8 +6x^7 -\dfrac{21}5x^5 +2x^3 -\dfrac3{10}x)] |
[math(10)] | [math(x^{10} -5x^9 +\dfrac{15}2x^8 -7x^6 +5x^4 -\dfrac32x^2 +\dfrac5{66})] |
9.1. 함숫값
- [math(B_0(x) = 1)]
베르누이 다항식의 식에 [math(n=0)]을 대입하면 된다.
[math(\displaystyle
B_0(x) = \sum_{k=0}^0 \!\binom0k B_k x^{0-k} = \binom00 B_0 x^0 = 1
)]
}}}||
- [math(B_n(0) = B_n(1) = B_n \qquad (n\neq1))]
[math(B_1(0) = -B_1(1) = B_1 = -\dfrac12)]
베르누이 다항식의 생성함수에 [math(x=0)] 및 [math(x=1)]을 대입하면 각각 다음과 같다.
[math(\displaystyle \begin{aligned}
\sum_{n=0}^\infty B_n(0) \frac{t^n}{n!} &= \frac{te^{0t}}{e^t-1} = \frac{t}{e^t-1} \\
\sum_{n=0}^\infty B_n(1) \frac{t^n}{n!} &= \frac{te^{1t}}{e^t-1} = \frac{te^t}{e^t-1}
\end{aligned} )]
그런데 이들은 다음과 같이 각각 [math(B_n)]과 [math(B^+_n)]의 정의이다.
[math(\displaystyle \begin{aligned}
\frac t{e^t-1} &= \sum_{n=0}^\infty B_n \frac{t^n}{n!} \\
\frac{te^t}{e^t-1} &= \sum_{n=0}^\infty B_n^+ \frac{t^n}{n!}
\end{aligned} )]
따라서 베르누이 다항식에 [math(x=0)] 및 [math(x=1)]을 대입한 함숫값은 다음과 같다.
[math(\displaystyle \begin{aligned}
B_n(0) &= B_n \\
B_n(1) &= B^+_n = (-1)^n B_n \qquad \blacksquare
\end{aligned} )]
한편, [math(n\neq1)]인 경우 [math(B^+_n = B_n)]이므로 위 식을 다음과 같이 쓸 수도 있다.
[math(\displaystyle
B_n(0) = B_n(1) = B_n \qquad (n\neq1)
)]
[math(n=1)]인 경우 다음과 같다.
[math(\displaystyle \begin{aligned}
B_1(0) &= B_1 = -\frac12 \\
B_1(1) &= B^+_1 = \frac12 \qquad \blacksquare
\end{aligned} )]
}}}||
9.2. 미적분
- [math(\dfrac{\rm d}{{\rm d}x} B_n(x) = nB_{n-1}(x) \qquad (n\ge1) )]
베르누이 다항식의 식을 직접 미분하면 된다.
[math(\displaystyle \begin{aligned}
B_n(x) &= \sum_{k=0}^n \!\binom nk B_k x^{n-k} = \sum_{k=0}^n \frac{n!}{k!(n-k)!} B_k x^{n-k} \\
\Rightarrow \frac{\rm d}{{\rm d}x} B_n(x) &= \sum_{k=0}^{n-1} \frac{n!}{k!(n-k)!} B_k \cdot (n-k)x^{n-k-1} \\
&= \sum_{k=0}^{n-1} \frac{n \cdot (n-1)!}{k!(n-k-1)!} B_k x^{n-k-1} \\
&= n \sum_{k=0}^{n-1} \binom{n-1}k B_k x^{(n-1)-k} = n B_{n-1}(x) \\
\therefore \frac{\rm d}{{\rm d}x} B_n(x) &= n B_{n-1}(x)
\end{aligned} )]
}}}||
- [math(\displaystyle \int B_n(x) \,{\rm d}x = \frac1{n+1} B_{n+1}(x) + {\sf const.} )]
위의 미분 결과에 [math(n)] 대신 [math(n+1)]을 대입하고 적분하면 된다.
[math(\displaystyle \begin{aligned}
\int (n+1)B_n(x) \,{\rm d}x &= \int \frac{\rm d}{{\rm d}x} B_{n+1}(x) \,{\rm d}x = B_{n+1}(x) + {\sf const.} \\
\therefore \int B_n(x) \,{\rm d}x &= \frac1{n+1} B_{n+1}(x) + {\sf const.}
\end{aligned} )]
}}}||
- [math(\displaystyle \int_0^1 B_n(x) \,{\rm d}x = \delta_{0,\,n} \quad)] (단, [math(\delta_{0,\,n})]은 크로네커 델타)
[math(\displaystyle \begin{aligned}
\int_0^1 B_n(x) \,{\rm d}x &= \frac1{n+1} \Bigl[ B_{n+1}(x) \Bigr]_0^1 = \frac{B_{n+1}(1) - B_{n+1}(0)}{n+1} \\
&= \frac{B^+_{n+1} - B_{n+1}}{n+1} = \begin{cases} 1 & {\sf if} \quad n=0 \\ 0 & {\sf if} \quad n\ge1 \end{cases} \\
&= \delta_{0,\,n}
\end{aligned} )]
\int_0^1 B_n(x) \,{\rm d}x &= \frac1{n+1} \Bigl[ B_{n+1}(x) \Bigr]_0^1 = \frac{B_{n+1}(1) - B_{n+1}(0)}{n+1} \\
&= \frac{B^+_{n+1} - B_{n+1}}{n+1} = \begin{cases} 1 & {\sf if} \quad n=0 \\ 0 & {\sf if} \quad n\ge1 \end{cases} \\
&= \delta_{0,\,n}
\end{aligned} )]
}}}||
9.3. 성질
- [math(\displaystyle B_n(x) = n \int_0^x B_{n-1}(t) \,{\rm d}t +B_n \qquad (n\ge1))]
[math(\displaystyle \begin{aligned}
\int_0^x nB_{n-1}(t) \,{\rm d}t &= \int_0^x \frac{\rm d}{{\rm d}t} B_n(t) \,{\rm d}t = B_n(x) - B_n(0) = B_n(x) - B_n \\
\therefore B_n(x) &= n\int_0^x B_{n-1}(t) \,{\rm d}t +B_n
\end{aligned} )]
\int_0^x nB_{n-1}(t) \,{\rm d}t &= \int_0^x \frac{\rm d}{{\rm d}t} B_n(t) \,{\rm d}t = B_n(x) - B_n(0) = B_n(x) - B_n \\
\therefore B_n(x) &= n\int_0^x B_{n-1}(t) \,{\rm d}t +B_n
\end{aligned} )]
}}}||
- [math(B_n(x+1) - B_n(x) = nx^{n-1})]
[math(\displaystyle \begin{aligned}
\sum_{n=0}^\infty B_n(x) \frac{t^n}{n!} &= \frac{te^{xt}}{e^t-1} \\
\sum_{n=0}^\infty B_n(x+1) \frac{t^n}{n!} &= \frac{te^{(x+1)t}}{e^t-1} = \frac{te^{xt}e^t}{e^t-1} \\
\Rightarrow \sum_{n=0}^\infty B_n(x+1) \frac{t^n}{n!} - \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!} &= \sum_{n=0}^\infty (B_n(x+1) - B_n(x)) \frac{t^n}{n!} \\
&= {\color{blue} \sum_{n=1}^\infty {\color{red} (B_n(x+1) - B_n(x))} \frac{t^n}{n!}} \\
&= \frac{te^{xt}e^t}{e^t-1} - \frac{te^{xt}}{e^t-1} = \frac{te^{xt}(e^t-1)}{e^t-1} = te^{xt} \\
&= t \sum_{n=0}^\infty \frac{(xt)^n}{n!} = \sum_{n=0}^\infty \frac{(n+1)x^n t^{n+1}}{(n+1)!} \\
&= {\color{blue} \sum_{n=1}^\infty {\color{red} nx^{n-1}} \frac{t^n}{n!}} \\
\therefore B_n(x+1) - B_n(x) &= nx^{n-1}
\end{aligned} )]
\sum_{n=0}^\infty B_n(x) \frac{t^n}{n!} &= \frac{te^{xt}}{e^t-1} \\
\sum_{n=0}^\infty B_n(x+1) \frac{t^n}{n!} &= \frac{te^{(x+1)t}}{e^t-1} = \frac{te^{xt}e^t}{e^t-1} \\
\Rightarrow \sum_{n=0}^\infty B_n(x+1) \frac{t^n}{n!} - \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!} &= \sum_{n=0}^\infty (B_n(x+1) - B_n(x)) \frac{t^n}{n!} \\
&= {\color{blue} \sum_{n=1}^\infty {\color{red} (B_n(x+1) - B_n(x))} \frac{t^n}{n!}} \\
&= \frac{te^{xt}e^t}{e^t-1} - \frac{te^{xt}}{e^t-1} = \frac{te^{xt}(e^t-1)}{e^t-1} = te^{xt} \\
&= t \sum_{n=0}^\infty \frac{(xt)^n}{n!} = \sum_{n=0}^\infty \frac{(n+1)x^n t^{n+1}}{(n+1)!} \\
&= {\color{blue} \sum_{n=1}^\infty {\color{red} nx^{n-1}} \frac{t^n}{n!}} \\
\therefore B_n(x+1) - B_n(x) &= nx^{n-1}
\end{aligned} )]
}}}||
- [math(B_n(1-x) = (-1)^n B_n(x))]
[math(\displaystyle \begin{aligned}
\sum_{n=0}^\infty B_n(1-x) \frac{t^n}{n!} &= \frac{te^{(1-x)t}}{e^t-1} = \frac{te^te^{-xt}}{e^t-1} \\
&= \frac{te^t}{e^t-1} e^{-xt} = \sum_{m=0}^\infty B^+_m \frac{t^m}{m!} \sum_{i=0}^\infty \frac{(-xt)^i}{i!} \\
&= \sum_{i=0}^\infty \sum_{m=0}^\infty (-1)^i B^+_m \frac{t^{m+i}}{m!} \frac{x^i}{i!} \qquad {\sf Let}: m+i=n \\
&= \sum_{i=0}^\infty \sum_{n=i}^\infty (-1)^i B^+_{n-i} \frac{t^n}{(n-i)!} \frac{x^i}{i!} \\
&= \sum_{n=0}^\infty \sum_{i=0}^n (-1)^i B^+_{n-i} \frac{t^n}{(n-i)!} \frac{x^i}{i!} \qquad {\sf Let}: n-i=k \\
&= \sum_{n=0}^\infty \sum_{k=n}^0 (-1)^{n-k} B^+_k \frac{t^n}{k!} \frac{x^{n-k}}{(n-k)!} \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n (-1)^k \frac{n!}{k!(n-k)!} \frac1{n!} B^+_k x^{n-k} t^n \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n \binom nk (-1)^k B^+_k x^{n-k} \frac{t^n}{n!} \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n \binom nk B_k x^{n-k} \frac{t^n}{n!} \\
&= \sum_{n=0}^\infty (-1)^n B_n(x) \frac{t^n}{n!} \\
\therefore B_n(1-x) &= (-1)^n B_n(x)
\end{aligned} )]
\sum_{n=0}^\infty B_n(1-x) \frac{t^n}{n!} &= \frac{te^{(1-x)t}}{e^t-1} = \frac{te^te^{-xt}}{e^t-1} \\
&= \frac{te^t}{e^t-1} e^{-xt} = \sum_{m=0}^\infty B^+_m \frac{t^m}{m!} \sum_{i=0}^\infty \frac{(-xt)^i}{i!} \\
&= \sum_{i=0}^\infty \sum_{m=0}^\infty (-1)^i B^+_m \frac{t^{m+i}}{m!} \frac{x^i}{i!} \qquad {\sf Let}: m+i=n \\
&= \sum_{i=0}^\infty \sum_{n=i}^\infty (-1)^i B^+_{n-i} \frac{t^n}{(n-i)!} \frac{x^i}{i!} \\
&= \sum_{n=0}^\infty \sum_{i=0}^n (-1)^i B^+_{n-i} \frac{t^n}{(n-i)!} \frac{x^i}{i!} \qquad {\sf Let}: n-i=k \\
&= \sum_{n=0}^\infty \sum_{k=n}^0 (-1)^{n-k} B^+_k \frac{t^n}{k!} \frac{x^{n-k}}{(n-k)!} \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n (-1)^k \frac{n!}{k!(n-k)!} \frac1{n!} B^+_k x^{n-k} t^n \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n \binom nk (-1)^k B^+_k x^{n-k} \frac{t^n}{n!} \\
&= \sum_{n=0}^\infty (-1)^n \sum_{k=0}^n \binom nk B_k x^{n-k} \frac{t^n}{n!} \\
&= \sum_{n=0}^\infty (-1)^n B_n(x) \frac{t^n}{n!} \\
\therefore B_n(1-x) &= (-1)^n B_n(x)
\end{aligned} )]
}}}||
9.4. 파울하버의 공식과의 관계
파울하버의 공식은 다음과 같이 주어진다.[math(\begin{aligned} \sum_{k=1}^n k^c &= \frac1{c+1}\sum_{k=0}^c \binom{c+1}k (-1)^kB_k n^{c+1-k} \\ &= \frac1{c+1}\,{\color{red}\sum_{k=0}^c\binom{c+1}k B_k^+ n^{c+1-k}} \end{aligned})] |
[math(\begin{aligned} B_{c+1}(-x) &= \sum_{k=0}^{c+1} \!\binom{c+1}k B_k (-x)^{c+1-k} = \sum_{k=0}^{c+1} \binom{c+1}k (-1)^{c+1-k}B_k x^{c+1-k} \\ &= \sum_{k=0}^c \binom{c+1}k (-1)^{c+1-k}B_k x^{c+1-k} + B_{c+1} \\ B_{c+1}(-x) - B_{c+1} &= \sum_{k=0}^c \binom{c+1}k (-1)^{c+1-k}B_k x^{c+1-k} \end{aligned})] |
[math(\begin{aligned} B_{c+1}(-n) - B_{c+1}(0) &= \sum_{k=0}^c \binom{c+1}k (-1)^{c+1-k}B_k n^{c+1-k} \\ &= (-1)^{c+1}\sum_{k=0}^c \binom{c+1}k (-1)^kB_k n^{c+1-k} \\ &= (-1)^{c+1}\,{\color{red}\sum_{k=0}^c \binom{c+1}k B_k^+ n^{c+1-k}}\end{aligned})] |
[math(\begin{aligned} -\frac{te^{nt}}{e^{-t}-1} &= \sum_{c=0}^\infty B_c(-n)\frac{(-t)^c}{c!} \\ &= \sum_{c=0}^\infty(-1)^cB_c(-n)\frac{t^c}{c!} \end{aligned})] |
[math(\begin{aligned} -\frac{e^{nt}-1}{e^{-t}-1} &= \frac1t\sum_{c=0}^\infty(-1)^c\{B_c(-n)-B_c(0)\}\frac{t^c}{c!} \\ &= \sum_{c=1}^\infty(-1)^c\{B_c(-n)-B_c(0)\}\frac{t^{c-1}}{c!} \\ &= \sum_{c=0}^\infty(-1)^{c+1}\{B_{c+1}(n)-B_{c+1}(0)\}\frac{t^c}{(c+1)!} \\ &= \sum_{c=0}^\infty{\color{red}\frac{(-1)^{c+1}}{c+1}\{B_{c+1}(-n) - B_{c+1}(0)\}}\frac{t^c}{c!} \\ &= \sum_{c=0}^\infty{\color{red}\sum_{k=1}^nk^c}\frac{t^c}{c!} = \sum_{c=0}^\infty\sum_{k=1}^n\frac{(kt)^c}{c!} = \sum_{k=1}^n\sum_{c=0}^\infty\frac{(kt)^c}{c!} \\ &= \sum_{k=1}^n e^{kt} = \sum_{k=1}^n(e^t)^k\end{aligned})] |
[1] 이것과 비슷한 성질의 수열로서 오일러 수열이 있는데 이 수열은 모든 홀수항이 [math(\bf0)]이다.[2] 당초 이 수열의 발견자인 야콥 베르누이 본인이 [math(B_1 = \dfrac12)]인 수열을 [math(B_n)]이라 정의했었는데, 훗날 연구를 통해 생성함수로 더 엄밀하게 정의될 수 있다는 것이 알려진 뒤 베르누이가 최초로 정의한 [math(B_n)]은 사실 [math(B^+_n)]임이 밝혀졌다.[3] 페르마도 이를 연구했었다! 사실 그는 구적법 때문에 거듭제곱 합의 중요성에 대해 인지하고 있었고, 그 일반식을 얻었으며 증명까지 해냈다고 했으나, 그 내용에 대해 자세한 기록을 남기지는 않았다(……)페르마가 또[4] 일본에서 출판되는 일부 교양 수학서들 중 세키 - 베르누이 수열이라는 명칭을 쓰는 게 있긴 하다.[5] 더해지는 수열 [math(a_n)]의 종류에 관계없이 [math(\alpha<\beta)]에 대해 합의 범위가 [math(\displaystyle\sum_{n=\beta}^\alpha a_n)]으로 주어지는 것.[6] 점화식이라고 생각하는 게 차라리 낫다.[7] 이를 제타 함수의 자명한 근이라고 한다.