#!if 넘어옴1 != null
'''비례'''{{{#!if 넘어옴2 == null
{{{#!if 넘어옴1[넘어옴1.length - 1] >= 0xAC00 && 넘어옴1[넘어옴1.length - 1] <= 0xD7A3
{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴1[넘어옴1.length - 1] < 0xAC00 || 넘어옴1[넘어옴1.length - 1] > 0xD7A3
은(는)}}}}}}{{{#!if 넘어옴2 != null
, ''''''{{{#!if 넘어옴3 == null
{{{#!if 넘어옴2[넘어옴2.length - 1] >= 0xAC00 && 넘어옴2[넘어옴2.length - 1] <= 0xD7A3
{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴2[넘어옴2.length - 1] < 0xAC00 || 넘어옴2[넘어옴2.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴3 != null
, ''''''{{{#!if 넘어옴4 == null
{{{#!if 넘어옴3[넘어옴3.length - 1] >= 0xAC00 && 넘어옴3[넘어옴3.length - 1] <= 0xD7A3
{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴3[넘어옴3.length - 1] < 0xAC00 || 넘어옴3[넘어옴3.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴4 != null
, ''''''{{{#!if 넘어옴5 == null
{{{#!if 넘어옴4[넘어옴4.length - 1] >= 0xAC00 && 넘어옴4[넘어옴4.length - 1] <= 0xD7A3
{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴4[넘어옴4.length - 1] < 0xAC00 || 넘어옴4[넘어옴4.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴5 != null
, ''''''{{{#!if 넘어옴6 == null
{{{#!if 넘어옴5[넘어옴5.length - 1] >= 0xAC00 && 넘어옴5[넘어옴5.length - 1] <= 0xD7A3
{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴5[넘어옴5.length - 1] < 0xAC00 || 넘어옴5[넘어옴5.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴6 != null
, ''''''{{{#!if 넘어옴7 == null
{{{#!if 넘어옴6[넘어옴6.length - 1] >= 0xAC00 && 넘어옴6[넘어옴6.length - 1] <= 0xD7A3
{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴6[넘어옴6.length - 1] < 0xAC00 || 넘어옴6[넘어옴6.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴7 != null
, ''''''{{{#!if 넘어옴8 == null
{{{#!if 넘어옴7[넘어옴7.length - 1] >= 0xAC00 && 넘어옴7[넘어옴7.length - 1] <= 0xD7A3
{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴7[넘어옴7.length - 1] < 0xAC00 || 넘어옴7[넘어옴7.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴8 != null
, ''''''{{{#!if 넘어옴9 == null
{{{#!if 넘어옴8[넘어옴8.length - 1] >= 0xAC00 && 넘어옴8[넘어옴8.length - 1] <= 0xD7A3
{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴8[넘어옴8.length - 1] < 0xAC00 || 넘어옴8[넘어옴8.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴9 != null
, ''''''{{{#!if 넘어옴10 == null
{{{#!if 넘어옴9[넘어옴9.length - 1] >= 0xAC00 && 넘어옴9[넘어옴9.length - 1] <= 0xD7A3
{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴9[넘어옴9.length - 1] < 0xAC00 || 넘어옴9[넘어옴9.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴10 != null
, ''''''{{{#!if 넘어옴10[넘어옴10.length - 1] >= 0xAC00 && 넘어옴10[넘어옴10.length - 1] <= 0xD7A3
{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴10[넘어옴10.length - 1] < 0xAC00 || 넘어옴10[넘어옴10.length - 1] > 0xD7A3
은(는)}}}}}} 여기로 연결됩니다.
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 선거에서 정당 득표율에 따라 의원정수를 배분하는 제도 또는 그에 의해 선출된 의원}}}에 대한 내용은 [[비례대표제]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[비례대표제#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[비례대표제#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.
#!if 리스트 != null
{{{#!if 문서명1 != null
* {{{#!if 설명1 != null
선거에서 정당 득표율에 따라 의원정수를 배분하는 제도 또는 그에 의해 선출된 의원: }}}[[비례대표제]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[비례대표제#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[비례대표제#|]] 부분}}}}}}{{{#!if 문서명2 != null
* {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
* {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
* {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
* {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
* {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
* {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
* {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
* {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
* {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}
#!if 넘어옴1 != null
'''반비례'''{{{#!if 넘어옴2 == null
{{{#!if 넘어옴1[넘어옴1.length - 1] >= 0xAC00 && 넘어옴1[넘어옴1.length - 1] <= 0xD7A3
{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴1[넘어옴1.length - 1] < 0xAC00 || 넘어옴1[넘어옴1.length - 1] > 0xD7A3
은(는)}}}}}}{{{#!if 넘어옴2 != null
, ''''''{{{#!if 넘어옴3 == null
{{{#!if 넘어옴2[넘어옴2.length - 1] >= 0xAC00 && 넘어옴2[넘어옴2.length - 1] <= 0xD7A3
{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴2[넘어옴2.length - 1] < 0xAC00 || 넘어옴2[넘어옴2.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴3 != null
, ''''''{{{#!if 넘어옴4 == null
{{{#!if 넘어옴3[넘어옴3.length - 1] >= 0xAC00 && 넘어옴3[넘어옴3.length - 1] <= 0xD7A3
{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴3[넘어옴3.length - 1] < 0xAC00 || 넘어옴3[넘어옴3.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴4 != null
, ''''''{{{#!if 넘어옴5 == null
{{{#!if 넘어옴4[넘어옴4.length - 1] >= 0xAC00 && 넘어옴4[넘어옴4.length - 1] <= 0xD7A3
{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴4[넘어옴4.length - 1] < 0xAC00 || 넘어옴4[넘어옴4.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴5 != null
, ''''''{{{#!if 넘어옴6 == null
{{{#!if 넘어옴5[넘어옴5.length - 1] >= 0xAC00 && 넘어옴5[넘어옴5.length - 1] <= 0xD7A3
{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴5[넘어옴5.length - 1] < 0xAC00 || 넘어옴5[넘어옴5.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴6 != null
, ''''''{{{#!if 넘어옴7 == null
{{{#!if 넘어옴6[넘어옴6.length - 1] >= 0xAC00 && 넘어옴6[넘어옴6.length - 1] <= 0xD7A3
{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴6[넘어옴6.length - 1] < 0xAC00 || 넘어옴6[넘어옴6.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴7 != null
, ''''''{{{#!if 넘어옴8 == null
{{{#!if 넘어옴7[넘어옴7.length - 1] >= 0xAC00 && 넘어옴7[넘어옴7.length - 1] <= 0xD7A3
{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴7[넘어옴7.length - 1] < 0xAC00 || 넘어옴7[넘어옴7.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴8 != null
, ''''''{{{#!if 넘어옴9 == null
{{{#!if 넘어옴8[넘어옴8.length - 1] >= 0xAC00 && 넘어옴8[넘어옴8.length - 1] <= 0xD7A3
{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴8[넘어옴8.length - 1] < 0xAC00 || 넘어옴8[넘어옴8.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴9 != null
, ''''''{{{#!if 넘어옴10 == null
{{{#!if 넘어옴9[넘어옴9.length - 1] >= 0xAC00 && 넘어옴9[넘어옴9.length - 1] <= 0xD7A3
{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴9[넘어옴9.length - 1] < 0xAC00 || 넘어옴9[넘어옴9.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴10 != null
, ''''''{{{#!if 넘어옴10[넘어옴10.length - 1] >= 0xAC00 && 넘어옴10[넘어옴10.length - 1] <= 0xD7A3
{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴10[넘어옴10.length - 1] < 0xAC00 || 넘어옴10[넘어옴10.length - 1] > 0xD7A3
은(는)}}}}}} 여기로 연결됩니다.
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 2023년에 발매된 음율의 EP 1집 수록곡}}}에 대한 내용은 [[幸福論 (행복론)]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[幸福論 (행복론)#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[幸福論 (행복론)#반비례 (反比例)|반비례 (反比例)]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.
#!if 리스트 != null
{{{#!if 문서명1 != null
* {{{#!if 설명1 != null
2023년에 발매된 음율의 EP 1집 수록곡: }}}[[幸福論 (행복론)]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[幸福論 (행복론)#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[幸福論 (행복론)#반비례 (反比例)|반비례 (反比例)]] 부분}}}}}}{{{#!if 문서명2 != null
* {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
* {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
* {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
* {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
* {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
* {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
* {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
* {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
* {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}
}}}}}}}}} ||1 . 도입2 . 정의3 . 기호4 . 그래프5 . 물리량의 비례·반비례 관계6 . 기타 [math(x)]를 삼각형의 개수라 하고, 전체 삼각형의 꼭짓점 개수를 [math(y)]라 하자. 이때, [math(x)]와 [math(y)]의 관계를 나타내면 아래와 같다. <colbgcolor=#efefef,#555555> [math(\boldsymbol{x})] 1 2 3 4 5 [math(\cdots)] [math(\boldsymbol{y})] 3 6 9 12 15 [math(\cdots)]
잘 살펴보면, [math(x)]가 2배, 3배, 4배, [math(\cdots)]일 때, [math(y)] 또한 2배, 3배, 4배, [math(\cdots)]가 된다. 이러한 관계를 정비례 라 한다. 넓이가 60인 사각형의 가로의 길이를 [math(x)], 세로의 길이를 [math(y)]라 하자. 이때, [math(x)]와 [math(y)]의 관계를 나타내면 아래와 같다. <colbgcolor=#efefef,#555555> [math(\boldsymbol{x})] 1 2 3 4 5 [math(\cdots)] [math(\boldsymbol{y})] 60 30 20 15 12 [math(\cdots)]
잘 살펴보면, [math(x)]가 2배, 3배, 4배, [math(\cdots)]일 때, [math(y)]는 [math(1/2)]배, [math(1/3)]배, [math(1/4)]배, [math(\cdots)]가 된다. 이러한 관계를 반비례 라 한다. 두 변수 [math(x)], [math(y)]가 정비례 한다는 것은, 다음을 만족시키는 함수 [math(f)]에 대하여 [math(y=f(x))]를 만족시킨다는 뜻이다. 임의의 [math(k)], [math(x)]에 대하여 [math(f(kx)=kf(x))]
이 정의를 통해 함수 [math(f)]를 묘사하는 식을 구해보자. [math(f(1)=a)]라 놓고, [math(x=1)]을 대입하면, [math(\displaystyle \begin{aligned} f(k)=k(f(1))=ak \end{aligned} )]
따라서 이를 묘사하는 식은 다음과 같다.즉, 상수항이 없는 일차함수 이다. 이때, 나온 [math(a)]를 비례상수 라 한다. 두 변수 [math(x)], [math(y)]가 반비례 한다는 것은, 다음을 만족시키는 함수 [math(f)]에 대하여 [math(y=f(x))]를 만족시킨다는 뜻이다. 임의의 [math(k)], [math(x)]에 대하여 [math(f(kx)=\dfrac{1}{k}f(x))]
이 정의를 통해 함수 [math(f)]를 묘사하는 식을 구해보자. [math(f(1)=a)]라 놓고, [math(x=1)]을 대입하면, [math(\displaystyle \begin{aligned} f(k)=\frac{1}{k}(f(1))=\frac{a}{k} \end{aligned} )]
따라서 이를 묘사하는 식은 다음과 같다.즉, 상수항이 없는 분수함수이다. 이때, 나온 [math(a)]를 비례상수 라 한다. 두 변수 [math(x)], [math(y)]가 정비례함을 다음과 같이 나타낸다.반비례함을 다음과 같이 나타낸다. [math(y\propto \dfrac{1}{x})]
다만, [math(y \propto x)], [math(y \propto z^{-1})]일 때, [math(x \propto z^{-1})]은 성립하지 않는다. 위에서 나온 함수식을 기억하면, 정비례와 반비례의 그래프는 다음과 같이 나옴을 예측할 수 있다.정비례 관계 그래프의 특징 정비례 관계 그래프는 원점을 지나는 직선이다. [math(a>0)]이면 1사분면과 3사분면을 지나며, [math(a<0)]이면, 2사분면과 4사분면을 지난다. [math(|a|)]값이 증가할수록 직선은 [math(y)]축에 가까워진다. 반비례 관계 그래프의 특징 반비례 관계 그래프는 쌍곡선 이다. 이 식 을 이용해 쌍곡선의 방정식으로 변형시킬 수 있다. [math(a>0)]이면 1사분면과 3사분면을 지나며, [math(a<0)]이면, 2사분면과 4사분면을 지난다. [math(|a|)]값이 감소할수록 곡선은 원점에 가까워진다. 반비례 관계 함수를 부정적분 하면 자연로그 가 나오며, 1에서 자연로그의 밑 [math(e) ]까지 정적분 을 하면 1이 나온다. 5. 물리량의 비례·반비례 관계과학 , 특히 물리학 과 화학 에서 각 물리량 의 관계를 식으로 나타낼 때 비례·반비례 관계가 자주 등장한다. 단순한 비례, 반비례 관계 뿐만 아니라 특정 물리량의 거듭제곱이나 거듭제곱근에 비례 또는 반비례하는 관계 역시 많다. 서로 다른 두 물리량이 항상 같은 비례 관계를 가지는 것은 아니며, 특정 조건에 따라 비례와 반비례 관계가 달라지기도 한다. 가장 대표적인 예시가 전압 과 전류 의 관계인데, 옴의 법칙 에서는 전압과 전류는 비례 관계이나, 전력 법칙에서는 반비례 관계이다. 두 물리량은 전기 저항 이 일정할 때는 비례 관계이지만, 전력 이 일정할 때는 반비례 관계이기 때문이다. 또한 보일 법칙 과 샤를 법칙 에 의하면 기체의 부피는 온도에 비례하고 압력에 반비례하지만, 단열 과정 이라면 비열비와 자유도라는 개념이 등장하여 아주 복잡해진다. 물리학에서 거리의 제곱에 반비례하는 물리량을 다루는 법칙이 바로 역제곱 법칙 이다.6.1. 개념 혼동 사례 사람들이 쉽게 혼동 하는 것이, 두 변수가 증가 (또는 감소 )가 동시에 일어나면 비례 관계라고 혼동하는 것이다. 예를 들어 [math(y = x^2)]의 경우, [math(x)]와 [math(y)]는 정비례 관계가 아니고, [math(x^2)]과 [math(y)]가 정비례 관계가 되는 것이다. 또한 한 변수가 커질 때 다른 변수가 작아지면 반비례 관계라고 착각하기 쉬운데 이것 또한 잘못된 생각이다. 예를 들어 [math(y=-x)]의 경우, [math(x)]가 커짐에 따라 [math(y)]는 작아지지만 이 관계는 반비례 관계가 아닌 비례 관계이다. [math(x)]가 두 배가 되면 [math(y)] 역시 두 배가 되기 때문이다. 따라서 다음 설명 또한 부정확한 설명이다. "한 변수가 커짐에 따라 다른 변수도 커지고 한 변수가 작아짐에 따라 다른 변수도 작아진다고 하면 이 두 변수는 정비례 관계에 있는 것이고, 한 변수가 커지면 커질수록 다른 변수는 작아진다고 하면 이 두 변수는 반비례 관계에 있는 것이다." 결론은 커진다 , 작아진다 는 부정확한 표현이고, 아래와 같이 비례 관계 로 정의해야 한다.한 변수가 2배, 3배 되면 다른 한 변수도 2배, 3배 되는 경우 그 두 변수는 (정)비례 관계이고 한 변수가 2배, 3배 될 때 다른 변수가 [math(1/2)]배, [math(1/3)]배 된다면 두 변수는 반비례 관계이다. 또는[math(a)]가 상수일 때 [math(y=ax)]를 만족시키는 경우 두 변수 [math(x)], [math(y)]는 정비례 관계에 있다. [math(a)]가 상수일 때 [math(\displaystyle y=a/x)]를 만족시키는 경우 [math(x)], [math(y)]는 반비례 관계에 있다.