최근 수정 시각 : 2024-09-14 00:11:21

이계도함수

삼계도함수에서 넘어옴

파일:상위 문서 아이콘.svg   상위 문서: 도함수
해석학·미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사(어림)
수열·급수 수열(규칙과 대응) · 급수(멱급수 · 테일러 급수(/목록) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수(이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분(/예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분 편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식 미분방정식(/풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수(분포이론)
조화해석 푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학(양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학(경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

1. 개요2. 응용
2.1. 가속도2.2. 이차 근사
3. 고계도함수(n계도함수)
3.1. 고계도함수의 응용
3.1.1. 함수의 오목/볼록 파악3.1.2. 가속도의 변화량 파악

1. 개요

3Blue1Brown의 고계도함수 설명 영상
/ second order derivative

도함수도함수이다. 즉, 도함수를 한 번 더 미분한 결과이다. 주로 도함수가 어떻게 변하는지 알기위해 사용된다. 이를 통해 가속도나 함수가 어디로 오목한지 확인 할 수 있다. 식으로는 [math(\dfrac{\rm d^2y}{{\rm d}x^2})]라고 쓴다.

이계도함수도 멱 규칙을 두번 적용하면 법칙이 성립한다.

2. 응용

2.1. 가속도

이동거리 함수를 미분하면 속도 함수가 나오고 이를 한번더 미분하면 가속도 함수가 나온다. 자세한건 가속도 문서 참조.

2.2. 이차 근사

일계도함수선형근사를 보이는것 처럼 이계도함수도 선형 근사가 적용된다. 이계도함수의 선형근사는 다음과 같다.
[math(f(x) \approx f(a)+f'(a)(x-a)+f''(a)(x-a)^2)]
이는 일계도함수의 선형근사보다 더욱 정밀한 결과가 나온다.

3. 고계도함수(n계도함수)

/ [math(n)]th order derivative
[math(\dfrac{\mathrm{d}^m}{\mathrm{d}x^m}x^n=n(n-1)...(n-m+1)x^{n-m})] ([math(m,n\in\mathbb Z)])
[math(\dfrac{\mathrm{d}^n}{\mathrm{d}x^n}e^x=e^x)] ([math(n\in\mathbb Z)])
그래프를 2번 이상 미분해서 나온 도함수이다. 이를 통해 함수가 오목한지 볼록한지와 가속도의 변화량의 변화량 등을 구할수 있다.

3.1. 고계도함수의 응용

3.1.1. 함수의 오목/볼록 파악

[math(f(x)=-3x^4)]함수가 있다.
일계도함수는 [math(f'(x)=-12x^3)]이고,
이계도함수는 [math(f''(x)=-36x^2)]이다.
삼계도함수는 [math(f'''(x)=-72x)]
사계도함수는 [math(f''''(x)=-72)]이다.
-72는 음수이므로 [math(f(x))]는 위로 볼록한 함수다.

3.1.2. 가속도의 변화량 파악

이동거리 함수에 대해 이계도함수인 가속도 함수를 한번 더 미분하면 가가속도(jerk) 함수가 나온다. 이를 통해 가속도의 전체적인 변화량을 확인 할 수 있다. 이는 가속도까지 신경써야하는 철도나 자동차 관련 분야에 쓰인다.