최근 수정 시각 : 2024-11-27 00:18:12

유클리드 기하학

유클리드 공간에서 넘어옴


파일:나무위키+유도.png  
초평면은(는) 여기로 연결됩니다.
충청북도 진천군 초평면에 대한 내용은 초평면(진천) 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
<rowcolor=#fff> '기하학·위상수학
'
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
평면기하학에 대한 내용은 틀:평면기하학 참고.
기본 대상
공리 유클리드 기하학 · 비유클리드 기하학
도형 기본 도형 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · (공 모양) · 전개도 · 겨냥도 · 다면체 (정다면체) · 정사영 · 대칭(선대칭 · 점대칭)
곡면 타원면 · 타원포물면 · 쌍곡포물면 · 원환면
프랙털 도형 시에르핀스키 삼각형 · 시에르핀스키 사각형(멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브
기타 다포체 · 초구 · 준구 · 일각형 · 이각형
다루는 대상과 주요 토픽
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브 · 타원곡선
미분기하학 미분다양체 · 측지선 · 곡률(스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간(쌍곡삼각형 · 푸앵카레 원반) · 타원 공간(구면삼각형) · 아핀접속
위상수학 위상 공간 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선
위상도형 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭(/목록)
주요 성질·정리 분리공리 · 우리손 거리화정리(우리손 보조정리) · 베르 범주 정리
대수적 위상수학 호모토피 · 사슬 복합체 · 호몰로지 이론(호몰로지 · 코호몰로지) · 사상류 군 · 닐센-서스턴 분류
기타 차원 · 좌표계 · 거리함수 · 그물 · 쾨니히스베르크 다리 건너기 문제 · 사이클로이드
정리·추측
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 페르마의 마지막 정리 · 호지 추측미해결 · 버치-스위너턴다이어 추측미해결
분야
논증기하학 · 대수기하학 · 미분기하학 · 해석 기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 }}}}}}}}}

평면기하학
Plane Geometry
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#765432> 공통 도형 · 직선 (반직선 · 선분 · 평행) · (맞꼭지각 · 동위각 · 엇각 · 삼각비) · 길이 · 넓이 · 다각형 (정다각형 · 대각선) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 (덧셈정리) · 접선 · 벡터
삼각형 종류 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형
성질 오심 (관련 정리 · 구점원) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리 · 판아우벌 정리
기타 세모 모양 · 평범한 삼각형 · 젤곤 삼각형 · 랭글리 삼각형 · 페르마 점
사각형 정사각형 · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양
그 외 다각형 오각형 · 육각형 · 칠각형 · 팔각형 (정팔각형) · 구각형 · 십각형 · 십일각형 · 십이각형 · 백각형
단위원 · 원주율 · · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리
원뿔곡선 포물선 · 타원 · 쌍곡선 · 파스칼 정리
기타 유클리드 · 보조선 · 테셀레이션(펜로즈 타일) · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 }}}}}}}}}


1. 개요2. 23개의 정의3. 5개의 공준4. 같이 보기

1. 개요

Euclidean Geometry

그리스 수학자유클리드에 의해 체계화된 기하학의 한 분야이다. 유클리드의 저서 원론의 제일 처음에 등장한다.[1] 이 원론은 수학의 논리적 근원이라 할 수 있는 '공리 체계'를 도입하는 것으로부터 시작했는데, 이 유클리드의 기하학은 오랜 세월 동안 아리스토텔레스의 연역적 논리 체계에 대한 모범이자, 수학의 증명법 및 형식적 이론의 모범이 되었다. 유클리드 이전에도 많은 수학자들이 유클리드가 증명해낸 성과들을 알고 있었지만, 유클리드는 이러한 명제가 포괄적이고 연역적이며 논리적인 시스템에 어떻게 들어갈 수 있는지를 처음으로 보여 주었다.

유클리드 기하학은 좌표를 사용하지 않고 공리에서 명제로 논리적으로 진행된다는 점에서 순수 기하학, 공리 기하학, 논증 기하학, 합성 기하학 등으로 불리기도 하며,[2] 좌표를 사용하는 해석기하학과 대조적이다.

요즘은 후술할 유클리드 공간에서의 공리를 뜻하는 것으로 의미로 한정되어 사용되는 경우도 있다.

유클리드 기하학이 적용되는 위상 공간을 유클리드 공간(Euclidean space)이라고 한다.[3] 이를 무한차원으로 확장한 것이 힐베르트 공간(Hilbertraum)이며, 함수해석학에서는 바나흐 공간(Przestrzeń Banacha)이라는 이름으로 더 일반화시켜 다룬다.

2. 23개의 정의

원론에는 23개의 정의가 등장하는데 다음과 같다.
  1. '점'은 넓이가 없는 위치이다.
  2. '선'은 폭이 없는 길이이다.
  3. 선의 양 끝은 점으로 이루어져 있다.
  4. '직선'은 고르게 놓여있는 점 위에 있는 선이다.
  5. '면'은 길이와 폭을 갖고 있다.
  6. '면'의 끝은 선으로 이루어져 있다.
  7. '평면'은 고르게 놓여있는 선 위에 있는 면이다.
  8. '평면각'은 면에 있는 두 선의 기울기로 두 선은 만나지만 같은 직선 위에 놓여있지는 않다.
  9. 여러 직선이 각을 만들었을 때의 각은 곧은각이라고 불린다.
  10. 한 직선 위에 다른 직선이 놓이고, 두 직선 사이에 만들어진 두 각이 서로 같을 시에 두 각은 직각으로 불리며 두 선은 서로 수직이다.
  11. 둔각은 직각보다 큰 각이다.
  12. 예각은 직각보다 작은 각이다.
  13. 경계는 모든 것의 끝이다.
  14. 도형은 경계를 갖고 있는 것이다.
  15. 원은 한 점으로부터 길이가 같은 직선이 뻗어 나갔을 때 만나는 점들로 둘러싸여 만들어진 평면 도형이다.
  16. 처음 기준이 된 점은 원의 중심으로 부른다.
  17. 지름이란 원의 둘레에서 원의 중심을 거쳐 원의 둘레로 이어진 직선을 말하며 또한 원을 반으로 나누는 선이다.
  18. 반원이란 원을 지름으로 이등분하였을 때의 한쪽으로 반원의 중심은 원의 중심과 같다.
  19. 다각형이란 직선들로 둘러싸인 평면 도형으로 삼각형은 세 개의 직선, 사각형은 네 개의 직선으로 둘러싸인 도형이다.
  20. 삼각형 중 정삼각형은 세 개의 변이 같은 것이고 이등변 삼각형은 두 개의 변이 같은 것이며 부등변 삼각형은 모든 변이 다른 삼각형이다.
  21. 또한 직각삼각형은 직각을 갖고 있는 삼각형이며 둔각삼각형은 둔각을 갖고 있는 삼각형이고 예각삼각형은 예각만을 갖고 있는 삼각형이다.
  22. 사각형 중 정사각형은 네 변이 모두 같고 직각으로만 이루어져 있는 것이며, 직사각형은 네 각이 모두 직각이지만 네 개의 변이 모두 같지는 않다. 마름모는 네 개의 변이 모두 같지만 직각으로 이루어져 있지 않고, 평행사변형은 마주보는 각과 변은 서로 같지만 네 개의 변과 각이 모두 같지는 않다.
  23. 한 평면 위에서 두 직선이 양쪽 어디에서도 만나지 않을 때 평행하다고 하고, 서로 평행한 두 직선을 평행선이라 한다.

3. 5개의 공준

이어서 5개의 공준(=공리[4])가 등장하는데 다음과 같다.
  1. 서로 다른 두 점이 주어졌을 때, 그 두 점을 잇는 직선[5]을 그을 수 있다.
  2. 임의의 선분은 더 연장할 수 있다.
  3. 서로 다른 두 점 A, B에 대해, 점 A를 중심으로 하고 선분 AB를 한 반지름으로 하는 원을 그릴 수 있다.[6]
  4. 모든 직각은 서로 같다.
  5. 임의의 직선이 두 직선과 교차할 때, 교차되는 각의 내각의 합이 두 직각(180도)보다 작을 때, 두 직선을 계속 연장하면 두 각의 합이 두 직각보다 작은 쪽에서 교차한다. (평행선의 공리, 제5공준)[7][8]

한 가지 재밌는 내용을 덧붙이자면, 유클리드 본인도 기하학 공리 중 앞의 4개는 명백해 보였으나, 마지막 평행선 공리는 이것이 정말 공리가 맞는지, 아니면 혹시 앞의 4개로부터 연역적으로 추론할 수 있는 것은 아닌지 확신하지 않았다고 한다.[9] 그래서 유클리드를 포함한 후세의 수학자들은 기하학의 문제를 증명할 때 가급적 평행선 공리를 쓰지 않고 증명하고자 하는 경향이 있었다. 평행선 공리가 공리인지 아닌지 밝히고자 하는 노력이 잘 되지 않자, 19세기 수학자들은 전략을 바꿔, 귀류법을 사용하여 평행선 공리가 거짓이라고 가정하면 모순이 발생함을 보여 평행선 공리가 참임을 증명하여 공리인 것을 밝히고자 했다. 그런데 원래 의도와는 달리, 유클리드 기하학의 전제조건인 2차원 평면에서 정의되는 유클리드 평행선 공리 자체의 모순은 밝혀내지 못했지만 평행선 공리를 거짓으로 하는 새로운 공리계를 만들었더니 유클리드 기하학 체계를 벗어난 새로운 체계에서는 아무런 모순이 발견되지 않았다![10] 그리하여 19세기에 이르러 니콜라이 로바체프스키보여이 야노시 등에 의해 제5공준을 벗어나는 기하학이론 체계가 완성[11]되면서 비유클리드 기하학이라는 이름이 붙고, 제5공준을 받아들이는 기하학을 유클리드 기하학이라고 부르게 된다. 엄밀히 말해서 유클리드 기하학을 부정하려했지만 비유클리드 기하학은 모든 학문의 발전처럼 기하학에서 기존 유클리드 기하학에 비유클리드 기하학 하나가 더 더해져서 유클리드 기하학을 기반으로 발전한 기하학을 확장하는 개념이다. 비유클리드 기하학의 간단한 예로 공 위의 세 점을 잇는 삼각형을 그리면 각각의 선분은 직선이 아니라 곡선이며 삼각형의 세 내각의 합은 180도보다 크다(구면기하학 or 리만기하학[12]). 또한 말 안장 위의 세 점을 잇는 삼각형을 그리면 세 내각의 합은 180도 보다 작게 된다.[13]

4. 같이 보기


[1] 프로젝트 구텐베르크 The Elements of Euclid by John Casey 1885 The First Six Books - https://www.gutenberg.org/ebooks/21076[2] 유클리드 기하학, 합성 기하학, 논증 기하학 등은 의미나 범위에서 약간의 차이를 두는 경우도 있지만, 대체로 같은 의미로 혼용되어 사용되는 경우가 많다.[3] 데카르트 공간(Cartesian space)이라고도 하는데, 좌표계를 발명한 르네 데카르트의 이름을 땄다. 유클리드 공간에 비해 잘 쓰이지 않으며, 용례도 유클리드 공간+직교좌표계라는 것을 강조하는 정도이다.[4] 엄연히 따지자면 다르다. 하지만 대부분 같이 쓴다.[5] 여기서 직선이란, 현대적 의미의 선분을 의미한다.[6] 이미 알고 있는 점 B에 대한 것이라는 점을 유의해야 한다. 즉, 이 공리 자체는 점 A에서 임의의 양수값 반지름의 원을 그릴 수 있다는 진술보다 약한 것이다.[7] 제5공준과 동치인 명제는 '직선 밖의 한 점을 지나 그 직선에 평행한 직선은 단 하나 존재한다.'이며 현대에는 이 표현을 더 많이 사용한다.[8] '삼각형의 세 내각의 합은 두 직각이다.' 같은 표현도 동치임은 증명되어 있지만, 삼각형을 별도로 정의해야 할 필요가 있다.[9] 참고로 공리는 개수가 적을수록 좋다.[10] 여기서 착각하지 말아야 할 것이 제5공준을 부정했을때 모순이 없다고 해서 절대로 유클리드 기하학이 틀렸다는 말이 아니다. 제5공준을 부정한 새로운 공리계를 모순이 없게 만들 수 있다는 뜻이다. 만약 유클리드 기하학 자체에 오류가 있음을 보이려면 '직선 밖의 한 점을 지나 그 직선에 평행한 직선이 존재한다.'에 모순이 있음을 증명해야 한다.[11] 사실 이전에도 리만이나 가우스가 비유클리드 기하학의 논의를 시작하기도 했다. 또 보이어가 비유클리드 기하학의 개념을 제시하기도 했으나 묻혔다...[12] 구면기하학을 리만기하학으로 부르던 시기도 있었으나, 현대에 들어서 리만기하학은 이보다 훨씬 더 일반적인 미분기하의 형식을 이르는 용어가 되었다.[13] 구면과 쌍곡면 등 2차원 다양체에서는 두 선이 이루는 각을 교점을 만드는 두 곡선이 교점에서 뻗어나가는 벡터가 형성하는 각으로 정의하였기 때문이다.