평면기하학 Plane Geometry | |||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#765432> 공통 | 도형 · 직선 (반직선 · 선분 · 평행) · 각 (맞꼭지각 · 동위각 · 엇각 · 삼각비) · 길이 · 넓이 · 다각형 (정다각형 · 대각선) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 (덧셈정리) · 접선 · 벡터 | |
삼각형 | 종류 | 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형 | |
성질 | 오심 (관련 정리 · 구점원) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리 · 판아우벌 정리 | ||
기타 | 세모 모양 · 평범한 삼각형 · 젤곤 삼각형 · 랭글리 삼각형 · 페르마 점 | ||
사각형 | 정사각형 · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양 | ||
그 외 다각형 | 오각형 · 육각형 · 칠각형 · 팔각형 (정팔각형) · 구각형 · 십각형 · 십일각형 · 십이각형 · 백각형 | ||
원 | 단위원 · 원주율 · 호 · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리 | ||
원뿔곡선 | 포물선 · 타원 · 쌍곡선 · 파스칼 정리 | ||
기타 | 유클리드 · 보조선 · 테셀레이션(펜로즈 타일) · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 | }}}}}}}}} |
1. 개요
삼각형의 오심과 관련된 여러 정리들과 더불어 한국수학올림피아드에 나오는 정리들을 기재하는 문서이다.모든 정리의 기호는 삼각형 [math(\triangle ABC)]의 외심 [math(O)], 내심 [math(I)], 무게중심 [math(G)], 수심 [math(H)], 방심 [math(I_{A})]를 따른다.
[math(a=\overline{BC})], [math(b=\overline{CA})], [math(c=\overline{AB})]으로 두고, [math(S)], [math(r)], [math(R)], [math(r_{A})], [math(s)]를 각각 도형의 면적, 내접원의 반지름, 외접원의 반지름, 방접원 [math(I_{A})]의 반지름, 삼각형의 둘레의 반([math(={1 \over 2}(a+b+c))])이라 하자.
2. 기본 정리
- 세르보어 정리
[math(O)]에서 변 [math(\overline{BC})]에 내린 수선의 발을 [math(M)]라 할 때, [math(\overline{AH}=2\overline{OM})]이다. 증명은 외심 참고. - 등각켤레
[math(\angle BAO=\angle CAH)] - 수선의 발과 공원점
[math(A)], [math(B)]에서 변 [math(\overline{BC})], [math(\overline{CA})]에 내린 수선의 발을 각각 [math(D)], [math(E)]라 할 때, [math(\left(A,B,D,E\right))]와 [math(\left(C,E,H,D\right))]는 공원점이다. - 각각 점 [math(A)], [math(B)], [math(C)]를 지나고, 한 점에서 만나는 세 직선을 그리자. 이 직선들의 교점을 [math(X)]라 하자. [math(X)]에서 각 변에 내린 수선의 발을 [math(D)], [math(E)], [math(F)]라 할 때, [math(\overline{XD}+\overline{XE}+\overline{XF})]가 최소인 점 [math(X)]는 [math(H)]다.
- [math(\triangle ABC)]의 수족 삼각형의 내심은 [math(H)]다.
- [math(A)], [math(I)], [math(I_{A})]는 한 직선 위에 있다.
- [math(\triangle ABC)]의 방심들이 이루는 삼각형의 수심은 [math(I)]다. (삼각형의 내심과 방심은 수심조이다.)
- ([math(A)], [math(B)], [math(I_{A})], [math(I_{B})])는 한 원 위에 있다.
- 맨션 정리
삼각형 [math(\triangle ABC)]의 외접원 [math(K)]와 반직선 [math(\overline{AI})]의 교점을 [math(D)]라 하자. 이 때 [math(\overline{DB}=\overline{DC}=\overline{DI}=\overline{D{I_{A}}})]다. - 반직선 [math(\overrightarrow{AI})]와 변 [math(\overline{BC})]의 교점을 [math(K)]라 하면, [math(\overline{AI}/\overline{KI}=\left(b+c\right)/a)]이다.
- 삼각형 내부의 점 [math(P)]에서 [math(\overline{BC})], [math(\overline{CA})], [math(\overline{AB})]에 내린 수선의 발을 각각 [math(D)], [math(E)], [math(F)]라 하면 [math(\overline{BC}/\overline{PD} + \overline{CA}/\overline{PE}+\overline{AB}/\overline{PF})]의 값이 최소인 점 [math(P)]는 [math(I)]이다.
- [math(S=\displaystyle {abc \over 4R}=2R^2 \sin A \sin B \sin C={a^2 \sin B \sin C \over 2 \sin A})] (사인법칙의 활용)
- [math(S=\displaystyle {1 \over 2} (a+b+c)r =\sqrt{s(s-a)(s-b)(s-c)})]
- 삼각형 내부의 점 [math(P)]에서 [math(\overline{BC})], [math(\overline{CA})], [math(\overline{AB})]에 내린 수선의 발을 각각 [math(D)], [math(E)], [math(F)]라 하면, [math(\overline{PD}\cdot\overline{PE}\cdot\overline{PF})]가 최댓값인 점 [math(P)]는 [math(G)]이다.
- 이 때 [math(S\left(\triangle ABC\right)=r_{A}\left(b+c-a\right)/2)]
- [math(\overline{OI}^2=R^2-2Rr)](오일러 삼각형 정리)
3. 보통 정리
- 라이프니츠 정리
[math(P)]가 삼각형 [math(ABC)]와 같은 평면 위의 임의의 한 점일 때, 다음 정리가 성립한다. - [math(\overline{AP}^2 + \overline{BP}^2 + \overline{CP}^2 = \overline{AG}^2 + \overline{BG}^2 + \overline{CG}^2 + 3\overline{PG}^2)]
- [math(\overline{GA}^2 + \overline{GB}^2 + \overline{GC}^2 = \left(\overline{AB}^2 + \overline{BC}^2 + \overline{CA}^2\right)/3)]
- 오일러 직선
[math(O)], [math(G)], 구점원의 중심 [math(V)], [math(H)]가 공선점(일직선)이다.
[math(\overline{OG} : \overline{GV} : \overline{VH} = 2 : 1 : 3)]이다. - 삼각형의 면적은 방심 삼각형과 내접원의 접점 삼각형 면적의 등비중항이다.
- 삼각형의 방심 삼각형과 내접원의 접점 삼각형의 오일러 직선이 일치한다.
- 삼각형 [math(\triangle ABC)]의 임의의 점 [math(P)]에서 내린 수선의 발을 각각 [math(D)], [math(E)], [math(F)]라 할 때, [math(S\left(\triangle DEF\right)/S\left(\triangle ABC\right) =\frac{\left|R^2 - OI^2\right|}{4R^{2}})]이다.
- 그밖에도 나겔 정리, 제르곤 정리, 페르마 포인트 관련 문제 등이 있다.
4. 심화 정리
- 포이어바흐 정리
구점원은 삼각형의 내접원, 세 방접원과 접한다. (증명은 반전기하(inversion)을 사용한다.) - Mixtilinear Circle
- 삼각형 [math(\triangle ABC)]의 외접원과 두 변 [math(\overline{AB})], [math(\overline{AC})]와 접하는 원 [math(Q)]를 잡자. [math(Q)]와 [math(\overline{AB})], [math(\overline{AC})]의 교점을 각각 [math(M)], [math(N)]이라 하면, [math(\overline{MN})]의 중점은 [math(I)]이다.
- 오심을 지나는 직선이 두 선분을 자르는 비율과 관련된 정리
주어진 와 오심 중 하나인 점 가 있다. 이 때, 임의의 를 지나고, 반직선 , 반직선 와 둘 다 만나는 직선이 반직선 , 와 만나는 점을 각각 , 이라 할 때, 의 길이와 의 길이의 관계식은 다음과 같다. - 가 내심일 때: .
- 가 외심일 때: .
- 가 수심일 때: .
- 가 직선 에 대하여 점 와 다른 방향에 있는 방심일 때: .
- 가 무게중심일 때: .
- 그 밖에 올림피아드에 쓰이는 정리들에는 미쿠엘 포인트[1], Pole & Polar (극, 극선), 근축 & 근심[2], isogonal line - conjugate & Symmedian(대칭중선), 메넬라우스 & 체바 응용, 파푸스 정리[3], 파스칼 정리, 브리앙숀 정리, 데자르그 정리, Monge's Theorem 등이 있다. 특히 비조화비에 관련된 것으로는 조화점열(Harmonic point), 조화사각형, 아폴로니우스의 원이 있다.