최근 수정 시각 : 2024-11-08 16:29:10

평범한 삼각형


평면기하학
Plane Geometry
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#765432> 공통 도형 · 직선 (반직선 · 선분 · 평행) · (맞꼭지각 · 동위각 · 엇각 · 삼각비) · 길이 · 넓이 · 다각형 (정다각형 · 대각선) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 (덧셈정리) · 접선 · 벡터
삼각형 종류 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형
성질 오심 (관련 정리 · 구점원) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리 · 판아우벌 정리
기타 세모 모양 · 평범한 삼각형 · 젤곤 삼각형 · 랭글리 삼각형 · 페르마 점
사각형 정사각형 · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양
그 외 다각형 오각형 · 육각형 · 칠각형 · 팔각형 (정팔각형) · 구각형 · 십각형 · 십일각형 · 십이각형 · 백각형
단위원 · 원주율 · · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리
원뿔곡선 포물선 · 타원 · 쌍곡선 · 파스칼 정리
기타 유클리드 · 보조선 · 테셀레이션(펜로즈 타일) · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 }}}}}}}}}

1. 개요2. 상세3. 관련 문서

[clearfix]

1. 개요

Triangle quelconque

자크 루브찬스키(Jacques Lubczanski)라는 학자가 고안한, '아무 특징이 없는' 삼각형. 때로는 '평범'하기가 '비범'하기보다 어려움을 보여주는 단적인 예이자, 언어철학역설의 일종이다.

2. 상세

웬만한 삼각형엔 다 이름이 붙어 있기 때문에 정말 이름 없는 평범한 삼각형 만들기가 오히려 힘들다. 예를 들어 직각이 있으면 직각삼각형, 둔각이 있으면 둔각삼각형, 두 변의 길이가 같으면 이등변삼각형이라고 한다. 이에 자크 루브찬스키는 아무 특징 없는 '평범한 삼각형'을 작도하는 법을 연구했다. 그가 고안한 가장 간단한 '평범한 삼각형'은 다음과 같이 그릴 수 있다.
  1. 정삼각형 하나를 그린다.
  2. 한 꼭짓점에서 대변(對邊)으로 수선을 내려 정삼각형을 이등분한 뒤, 그 중 하나를 버린다.
  3. 2에서 나온 직각삼각형의 길이가 중간인 변을 짧은 변으로 하는 직각이등변삼각형을 덧붙여 그린다.
  4. 세 각이 각각 [math(45\degree)], [math(60\degree)], [math(75\degree)]인 정말 이름 없는 삼각형이 나온다.

파일:나무_평범한삼각형png.png
그러나 평범한 삼각형의 세 각은 각각 [math(45\degree)], [math(60\degree)], [math(75\degree)]이므로 그냥 예각삼각형이라는 이름을 붙일 수 있으며, 세 변의 길이가 모두 다르므로 부등변삼각형이라는 이름을 붙일 수도 있어서 자크 루브찬스키의 연구는 사실 부질없다. 애당초 특수한 이름이 붙어 있는 여러 삼각형의 집합들은 종종 삼각형의 집합에 대하여 분할(partition)[1]이 되기 때문에 어떤 삼각형을 만들어도 그 삼각형에는 이름이 붙으므로 이런 생각을 할 여지조차도 원래는 없다. 예를 들어 각의 측면에서는 예각삼각형, 둔각삼각형, 직각삼각형의 집합이 그러하며, 변의 측면에서는 부등변삼각형, 이등변삼각형, 정삼각형의 집합이 그러하다. 다시 말해서 모든 삼각형은 예각삼각형, 둔각삼각형, 직각삼각형 중 하나이며, 부등변삼각형, 이등변삼각형, 정삼각형 중 하나인 것이다.

그런데 여기에서 정말 주목해야 할 대목은 '평범한 삼각형'이라는 이름이자 특징이 생겼으므로 이름과 달리 결국 평범한 삼각형이 아니게 된다는 점이다. 그렇다면 도대체 '평범하다', '비범하다', '특이하다'의 의미란 무엇인가? 이는 베켄바흐의 역설에서 제기되는 언어철학적 문제와도 맞닿아 있다.

3. 관련 문서


[1] 집합 [math(S)]에 대하여 [math(\displaystyle\bigcup_{i=1}^nS_i=S)]이고 모든 [math(i\neq j)]에 대하여 [math(S_i\cap S_j=\phi)]이면 이 [math(S_i)]들을 집합 [math(S)]의 분할이라고 한다. 아주 직관적으로 말하면 어떤 집합을 여러 조각으로 나누어 놓았을 때 각 조각들이 분할인 것이다.

파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r156에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r156 (이전 역사)
문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)