최근 수정 시각 : 2025-08-15 15:15:05

일각형


<rowcolor=#fff> '기하학·위상수학
'
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
평면기하학에 대한 내용은 틀:평면기하학 참고.
기본 대상
공리 유클리드 기하학 · 비유클리드 기하학
도형 기본 도형 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · (공 모양) · 전개도 · 겨냥도 · 다면체 (정다면체) · 정사영 · 대칭(선대칭 · 점대칭)
곡면 타원면 · 타원포물면 · 쌍곡포물면 · 원환면
프랙털 도형 시에르핀스키 삼각형 · 시에르핀스키 사각형(멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브
기타 다포체 · 초구 · 준구 · 일각형 · 이각형
다루는 대상과 주요 토픽
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브 · 타원곡선
미분기하학 미분다양체 · 측지선 · 곡률(스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간(쌍곡삼각형 · 푸앵카레 원반) · 타원 공간(구면삼각형) · 아핀접속
위상수학 위상 공간 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선 · 조르겐프라이 직선
위상도형 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭(/목록)
주요 성질·정리 분리공리 · 우리손 거리화정리(우리손 보조정리) · 베르 범주 정리 · 부동점 정리
대수적 위상수학 호모토피 · 사슬 복합체 · 호몰로지 이론(호몰로지 · 코호몰로지) · 사상류 군 · 닐센-서스턴 분류 · 호프대수
기타 차원 · 좌표계 · 거리함수 · 그물 · 쾨니히스베르크 다리 건너기 문제 · 사이클로이드
정리·추측
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 페르마의 마지막 정리 · 호지 추측미해결 · 버치-스위너턴다이어 추측미해결
분야
논증기하학 · 대수기하학 · 미분기하학 · 해석 기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 }}}}}}}}}

파일:일각형.svg파일:일각형_White.svg
구면 상 하나의 선분으로 구성된 일각형.

1. 개요

/ monogon

오직 한 개의 변과 한 개의 각으로 이루어진 도형. 오직 하나의 점 자기 자신을 선분으로 이어 다시 만나게 만들 방법이 없는 유클리드 기하학에서는 당연히 불가능한 도형이지만 최단거리의 정의가 유클리드 기하학과 다른 비유클리드 기하학에서는 가능하다. 대표적으로 직선을 그었을 때 그 직선이 자기자신과 다시 만나게 되는 구면기하학에서 가능하다.[1]

2. 상세

자기 자신의 경선이 이루는 각은 무조건 180º가 된다. 그리고 구면기하학에서 일각형이 들어간 정다면체는 {2,1}, {1,2}만 나타낼 수 있기도 하다. {1,1}, {3,1}, {1,3}과 같은 형태는 구면기하학 상에서도 그릴 수 없다는 말도 된다.[2] 4차원에서도 {2,2,1}, {1,2,2}, {2,1,2}, {1,2,1}, {n,2,1}, {1,2,n} 형태만 초구에서 나타내는 것이 가능하며 모든 차원에서 1은 반드시 2가 이웃한 것들만 n차원 구면 기하학에서 나타내는 것이 가능하다.[3] 즉 4차원에서도 {3,2,1}, {1,2,3} 이런 형태는 가능하지만 {3,1,3}, {1,3,1}, {3,3,1}, {1,3,3} 이런 형태는 구면기하학에서조차 나타낼 수 없다는 뜻이다.

구면에서는 어떤 점에 대해 줄자를 대고 그으면 자연스럽게 일각형이 만들어진다. 물론 정확한 구여야 하며 타구에서는 안만들어지는 경우도 있다. 구면에서의 직선은 3차원 관찰자가 바라봤을 때 무조건 반지름이 구면과 같은 (대원)이므로, 어떤 경로를 선택하든 만들어진 일각형은 모두 정일각형이며, 모두 변의 길이가 같은 합동이다.

일각형은 이각형에 비해서도 많은 조건들을 만족시키지 못한다. 퇴화된 다면체(degenerate polytope)라고도 불린다. 구면 기하학에서는 그릴 수 있지만 평면 상에서는 절대로 그릴 수 없는 도형이기도 하다.
[1] 이는 직선이 기본적으로 '선분의 양 끝을 무한히 연장시킨 도형'이라는 것에서 기인한다. 구면기하학에서의 선분은 3차원 관찰자인 우리가 바라보았을 때 원호의 형태와 같은데, 원호를 같은 방향으로 구면 위에서 무한히 연장하면 당연히 구면 위의 직선, 즉 원이 되기 때문이다. 직선에 대한 개념을 유클리드 평면에서의 경우와 혼동하지 않도록 주의가 필요하다.[2] 구면기하학에서 다각형의 최소 임계점은 [math(4\pi)]/([math(2\pi)]- 다각형의 구면 내부에서의 외각의 총합)에서 구면 전체를 덮는 1이 나오는 값에 해당하며 대수적으로만 따져도 {2,1}, {1,2} {3,6/5}, {6/5,3}, {4,4/3}, {4/3,4}, {5,10/7}, {10/7,5}, {6,3/2}, {3/2,6} 등이 해당된다. 이 이하는 구면기하학에서 조차 나타낼 수 없는 새로운 형태이며 하이퍼볼릭 공간으로 넘어가는 것들도 존재한다. {2,1}과 {1,2}는 바로 임계점에 해당하는 형태이기도 하다.[3] 이는 듀오프리즘 원리와도 비슷하다.