최근 수정 시각 : 2025-01-07 17:20:54

키르히호프의 법칙

키르히호프 법칙에서 넘어옴
'''[[전기전자공학과|전기·전자공학
{{{#!wiki style="font-family: Times New Roman, serif; font-style: Italic; display: inline;"
]]'''
{{{#!wiki style="margin:0 -10px -5px; min-height: 26px; word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#009><colcolor=#fff> 학문 기반 학문
물리학 (전자기학 (회로이론 · 전자 회로 · 논리 회로) · 양자역학 · 물리화학 · 열역학 · 응집물질물리학) · 화학
연관 학문
수학 (공업수학 · 수치해석학 · 위상수학 · 미분방정식 · 대수학 (환론 · 표현론) · 선형대수학 · 이론 컴퓨터 과학 · 컴퓨터공학 (프로그래밍 언어 (HDL · VHDL · C · C++ · Java · 파이썬 · 베릴로그)) · 재료공학 · 제어 이론
공식 · 법칙 전자기 유도 · 가우스 법칙 · 비오-사바르 법칙 · 무어의 법칙 · 키르히호프의 법칙 · 맥스웰 방정식 · 로런츠 힘 · 앙페르 법칙 · 드모르간 법칙 · 페르미 준위 · 중첩의 원리
이론 · 연구 반도체 (P형 반도체 · N형 반도체) · 디스플레이 · 논리 회로 (보수기 · 가산기 · 플립플롭 · 논리 연산) · 전자 회로 · RLC 회로 · 역률 · DSP · 히스테리시스 곡선 · 휘트스톤 브리지 · 임베디드 시스템
용어 클럭 · ASIC · CPU 관련 (BGA · 마이크로아키텍처 · GPS · C-DRX · 소켓) · 전계강도계 · 축전기 · CMCI · 전송선 · 양공 · 도핑 · 이미터 · 컬렉터 · 베이스 · 시퀀스 · 헤테로다인
전기 · 전자
관련 정보
제품
스마트폰 · CPU · GPU (그래픽 카드) · ROM · RAM · SSD · HDD · MPU · CCD · eMMC · USB · UFS · LCD · LED · OLED · AMOLED · IoT · 와이파이 · 스마트 홈 · 마그네트론 · 마이크 · 스피커 · 배터리
소자
집적 회로 · 다이오드 · 진공관 · 트랜지스터 (BJT · FET · JFET · MOSFET · T-FT) · CMOS · IGBT · 저항기 · 태양전지 · 연산 증폭기 · 사이리스터 · GTO · 레지스터 · 펠티어 소자 · 벅컨버터
자격증
전기 계열 기능사
전기기능사 · 철도전기신호기능사
기사
전기기사 · 전기산업기사 · 전기공사기사 · 전기공사산업기사 · 전기철도기사 · 전기철도산업기사 · 철도신호기사 · 철도신호산업기사
기능장 및 기술사
전기기능장 · 건축전기설비기술사 · 발송배전기술사 · 전기응용기술사 · 전기안전기술사 · 철도신호기술사 · 전기철도기술사
전자 계열 기능사
전자기기기능사 · 전자계산기기능사 · 전자캐드기능사
기사
전자기사 · 전자산업기사 · 전자계산기기사 · 전자계산기제어산업기사
기능장 및 기술사
전자기기기능장 · 전자응용기술사
기타 기능사
신재생에너지발전설비기능사(태양광)
기사
소방설비기사 · 신재생에너지발전설비기사(태양광) · 로봇소프트웨어개발기사 · 로봇하드웨어개발기사 · 로봇기구개발기사
}}}}}}}}}

전자기학
Electromagnetism
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
기초 개념
<colbgcolor=#009><colcolor=#fff> 관련 수학 이론 [math(boldsymbol{nabla})] · 디랙 델타 함수 · 연속 방정식 · 분리 벡터
전기 · 자기 개념 전자기력(자기력) · 전자기 유도(패러데이 법칙) · 맥스웰 방정식 · 전자기파 · 포인팅 벡터 · 전자기학의 경계치 문제 · 전자기파 방사
정전기학 전하 · 전기장 · 전기 변위장 · 전기 퍼텐셜 · 가우스 법칙 · 전기 쌍극자 모멘트 · 유전율 · 대전현상 · 정전용량 · 시정수 · 정전기 방전
정자기학 자성 · 자기장 · 자기장 세기 · 자기 퍼텐셜 · 자기 쌍극자 모멘트 · 로런츠 힘 · 홀 효과 · 비오-사바르 법칙 · 앙페르 법칙 · 투자율
구현체 자석(전자석 · 영구 자석) · 발전기 · 전동기
회로이론 · 전자회로 개념 회로 기호도 · 전류 · 전압 · 전기 저항(비저항 · 도전율) · 전력(전력량) · 직류 · 교류 · 키르히호프의 법칙 · 중첩의 원리 · 삼상
소자 수동소자: 직류회로(휘트스톤 브리지) · RLC회로(커패시터 · 인덕터 · 레지스터), 변압기
능동소자: 전원 · 다이오드 · 트랜지스터 · 연산 증폭기
응용 및 심화개념
관련 학문 상대론적 전자기학 · 양자 전기역학 · 응집물질물리학 · 고체물리학 · 전자공학 · 전기공학 · 제어공학 · 물리화학 · 광학 · 컴퓨터 과학(컴퓨터공학)
토픽 이론 광자 · 게이지 장(역장 · 장이론) · 물질파(광전효과) · 다중극 전개 · 맥스웰 변형 텐서
음향 앰프(파워앰프 · 프리앰프 · 인티앰프 · 진공관 앰프) · 데시벨 · 네퍼
반 데르 발스 힘(분산력) · 복사 · 전도(전도체 · 열전 효과) · 초전도체 · 네른스트 식
광학 굴절(굴절률 · 페르마의 원리) · 스넬의 법칙 · 산란 · 회절 · 전반사 · 수차(색수차) · 편광 · 뉴턴 원무늬 · 분광학 · 스펙트럼 · 렌즈(얇은 렌즈 방정식 · 두꺼운 렌즈) · 프리즘 · 거울(구면 거울 방정식) · 행렬광학 · (색의 종류 · RGB)
전산 논리 연산 · 논리 회로 · 오토마타(프로그래밍 언어) · 임베디드 · 컴퓨터 그래픽스(랜더링) · 폴리곤 · 헥스코드
생물 생체신호(생체전기 · BCI) · 신경계(막전위 · 활동전위 · 능동수송) · 신호전달 · 자극(생리학)(베버의 법칙 · 역치)
기타 방사선 · 반도체 · 전기음성도 · 와전류 · 방전 · 자극 · 표피효과 · 동축 케이블 · 진폭 변조 · 주파수 변조 · 메타물질
관련 문서
물리학 관련 정보 · 틀:전기전자공학 · 전기·전자 관련 정보 · 틀:이론 컴퓨터 과학 · 틀:컴퓨터공학 }}}}}}}}}

1. 개요2. 상세
2.1. 제1 법칙2.2. 제2 법칙
3. 팁4. 여담

1. 개요

Kirchhoff's law

전기 회로에서 전압전류를 구하는 해결 법칙의 하나.

간단히 얘기하자면 회로 내에서의 에너지 보존 법칙을 정리한 것이다.

전하량 보존 및 에너지 보존에 기초하여 유도된다. 독일의 물리학자 키르히호프(Gustav Kirchhoff; 1824-1887)가 19세기에 정립하였다.

경우에 따라서는 전기회로의 방정식을 세우는 데 필수적인 도구라 하여 '키르히호프의 규칙'이라고도 한다.

2. 상세

2.1. 제1 법칙

키르히호프의 전류 법칙(Kirchhoff's current law, KCL)라고도 한다.

회로 내의 어떤 지점에서든지 들어오는 전류의 합과 나가는 전류의 합은 같다.

따라서 어떤 회로상의 점을 기준으로 들어오는 전류의 부호를 양으로 하고, 나가는 전류의 부호를 음으로 할 때[1] 이들의 부호를 고려해준 전류값을 [math(I_{k})]라 할 때,

[math(\displaystyle \sum_{k} I_k = 0)]

이 성립한다.

이를테면,

파일:namu_키르히호프_법칙_제1법칙.webp

위 그림과 같은 상황에서는 위의 전류 부호 규약을 적용하면,

[math(\displaystyle I_{1}+I_{2}-I_{3}-I_{4}-I_{5}=0)]

이 된다.

여기서 '한 지점'이란 꼭 분기점일 필요는 없다. 단순히 '선로 상의 한 지점'에서도 들어오는 전류와 나가는 전류의 크기는 동일하며, 해당 지점에서는 전하가 쌓이지 않는다. 흔히들 하는 오해가 이름 때문인지 전류가 나뉘는 분기점에서만 성립한다고 생각하는데, 전하량 보존 법칙을 생각해보면 그냥 단일 도선의 어떤 지점에서든지 들어온 전류가 나가는 전류와 같다는 것을 알수 있다. 전류가 한 방향으로 흐르기 때문이다.

이는 정상 전류의 조건과 관계가 있다. 정상 전류란 시간에 따라 전류가 변하지 않으며, 한 지점에서 전하가 쌓이면 안 된다. 전하량은 언제나 보존되기 때문에 '한 지점에 들어오는 전류'와 '나가는 전류'에 차이가 생기면 그 차이만큼 전하가 쌓인다. 이는 다시 말하면 전기회로의 어느 지점에서는 전류의 출입에 균형이 맞아야 하고, 이것이 키르히호프의 전류 법칙이다.

2.2. 제2 법칙

키르히호프의 전압 법칙(Kirchhoff's voltage law, KVL)라고도 한다.

이것은 곧, 회로 내의 에너지 보존 법칙을 의미한다.

회로 속 닫힌 경로에서 전원의 기전력의 합은 회로 소자의 전합 강하의 합과 같다. 즉,

[math(\displaystyle I\sum_{j} V_{\textsf{source},\,j} = \sum_{k} V_{\textsf{device},\,k})]


전기회로 내의 모든 지점은 전기 퍼텐셜을 지정할 수 있다. 한편 어떤 '닫힌 경로'를 따라 이동할 때 전기 퍼텐셜의 변화는 제자리로 돌아오고, 이것이 제시된 수식에 써진 바와 같다. 이것이 키르히호프의 전압 법칙이다.

참고로 통상 '고도'를 정할 때 특정한 지점의 고도를 기준으로 삼고 다른 지점의 고도를 측정한다. 전기회로도 마찬가지다. 전기 회로 내의 특정 지점의 전기 퍼텐셜을 지정하면, 다른 지점의 전기 퍼텐셜을 구할 수 있다.

한 전자(전하운반자)의 입장에서 볼 때, 전자는 전원을 거치면서 에너지를 받고, 회로 소자를 지나면서 일을 한다. 이 때 에너지의 출입은 전자의 전하량과 전위의 변화의 곱으로 나타난다. 전자가 제자리로 돌아올 때 같은 퍼텐셜 준위로 돌아오므로, 들어온 에너지와 나간 에너지는 동일해야 한다. 이는 전원이 일한 만큼 에너지가 회로 소자로 전달된다는 뜻이 된다.

이렇게만 나타내면 쉬워 보이지만, 각 회로에 흐르는 전류를 이용하여 연립방정식을 세워야 하기 때문에 계산이 꽤 까다롭다. 미지수를 잘못 세우면 4차원 연립일차방정식까지도 갈 수 있으니 주의해야 한다.

3.

KCL이나 KVL을 적용할 때 주의해야 할 점이 있다. KCL은 마디 사이에 전압원이 붙어있을 경우 적용할 수 없고, KVL은 전류원이 붙어 있는 망로에 적용할 수 없다. KCL은 마디에 들어오거나 마디에서 나가는 전류를 구해야 하는데 전압원에 흐르는 전류가 얼마인지 바로 알 수 없으며[2], KVL은 망로를 따라가면서 강하하는 전압을 계산해야 하는데 전류원에 전압이 얼마나 걸려 있는지 모르므로[3] 방정식을 세울 수 없기 때문이다.[4]

보통 회로를 해석할 때는 KCL을 사용해서 방정식을 세우는데, KCL이 KVL보다 직관적이기도 하고, 회로를 해석할 때 전류원이 달려있는 경우가 많아서[5] KVL을 적용하기 까다롭기 때문이다.

키르히호프의 법칙을 바로 회로 해석에 적용하면 연립방정식 계산이 상대적으로 까다롭기 때문에, 회로 해석을 할 때 키르히호프의 법칙을 체계적으로 적용해서 구해야 하는 연립방정식의 개수를 최소화하는 매우 유용한 회로 해석 방법인 마디 해석(nodal analysis)과 망로 해석/폐로 해석을 사용할 수 있다. 각각 마디 전압법(node voltage method), 망 전류법(mesh current method)라고도 한다. 마디 해석은 기준 마디를 정해서 [math(0\,{\rm V})]([math(rm GND)])를 할당하고 변수를 마디 전위[6]로 해서 [math(I)][math(=)][math(V)][math(/)][math(Z)] 혹은 [math(I)]=[math(V/)][math(R)] 식을 적용해 들어오거나 나오는 전류를 계산해서 KCL을 적용하는 방법이며, 망로 해석은 망로를 순환하는 가상의 전류를 (보통 시계 방향으로) 가정해서 변수로 잡고 [math(V=IZ)](교류 회로) 혹은 [math(V=IR)](직류 회로)식을 적용해 전압 강하의 합을 계산해서 KVL을 적용하는 방법이다. 그래프 이론을 사용하면 해당 분석법을 더 심도있게 이해할 수 있다. 회로를 해석할 때 두 방법 중 어떤 방법을 사용해도 상관없지만, 전류원이 있거나 마디의 개수가 적은 경우 마디 해석을 사용하고, 전압원이 있거나 망로의 개수가 적은 경우 망로 해석을 사용하는 게 편하다.

4. 여담

  • 전기・전자공학에서 키르히호프의 법칙은 고전역학에서 뉴턴의 운동 법칙이 차지하는 위상과 대등한 위상을 차지할 만큼 기본적인 법칙이다.[7] 따라서 전기전자공학과에 재학하는 학생들은 반드시 알아야 하는 공식이다. 이 공식을 이용하면 많은 식을 유도할 수 있어 이후 배울 전기, 전자 이론에서 외워야 할 식의 수를 줄여준다. 키르히호프의 법칙을 사용하면 왜 OP 앰프로 미분기와 적분기(를 제작하는지도 알 수 있고, RLC회로에서의 이계 선형 상미분방정식을 유도할 수도 있다.
  • 일반계 중고등학교 교육과정에서는 현재 삭제 상태이다. 과거 7차 교육과정의 물리Ⅱ까지 등장하였으나 지나친 학습 부담을 이유로 2009 개정 교육과정부터 삭제되었다. 2015 개정 교육과정에서는 저항의 직병렬 연결에 대한 회로가 중3 과정에서 양분화하여 물리학Ⅱ로 올라 왔지만 키르히호프 법칙은 다루지 않는다.[8] 이 때문에 키르히호프 법칙을 쓰면 유리한 복잡한 회로들은 현재 출제가 지양되고 있는 추세이다.

[1] 반대로 잡아도 무관.[2] 전류의 크기와 상관없이 몇 V의 전위차가 걸리는지만 표시해 준다.[3] 전위차와 상관없이 몇 [math(\rm A)]의 전류가 흐르는지만 표시해 준다.[4] 다만 초마디(supernode, 중간에 전압원이 낀 여러 마디를 하나의 마디로 묶어 취급하는 것), 초망로(supermesh, 중간에 전류원이 낀 망로를 하나의 망로로 묶어 취급하는 것)라는 테크닉으로 우회해서 이 문제를 해결할 수 있다.[5] 예를 들면 MOSFET을 small signal로 모델링 하면 transconductance와 backgate transconductance가 종속 전류원으로 달라붙는다.[6] 기준 마디가 아닌 두 마디 간의 전위차가 아니라, 기준 마디와 구하고자 하는 마디의 전위차.[7] 실제로 키르히호프 제1 법칙은 전기회로에서의 전하량 보존 법칙, 제2 법칙은 에너지 보존 법칙으로 둘다 물리 기본법칙의 양대산맥을 차지한다. 심지어 직렬 병렬 회로의 기초적인 전압,전류,저항의 관계도 이것을 이용해서 증명한다.[8] 교학사 교과서에서만 다루는데 참고 사항일 뿐 주요 내용은 아니다. 교과 외 내용을 많이 다루는 하이탑 참고서에서는 부분 개념으로 나오기는 한다. 참고로 한국물리올림피아드에는 나온다.