최근 수정 시각 : 2024-11-21 08:33:28

회로이론


전자기학
Electromagnetism
{{{#!wiki style="margin:0 -10px -5px; min-height:2em; word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
기초 개념
<colbgcolor=#009><colcolor=#fff> 관련 수학 이론 [math(boldsymbol{nabla})] · 디랙 델타 함수 · 연속 방정식 · 분리 벡터
전기 · 자기 개념 전자기력 · 전자기 유도(패러데이 법칙) · 맥스웰 방정식 · 전자기파 · 포인팅 벡터 · 전자기학의 경계치 문제 · 전자기파 방사
정전기학 전하 · 전기장 · 전기 변위장 · 전기 퍼텐셜 · 가우스 법칙 · 전기 쌍극자 모멘트 · 유전율 · 대전현상 · 정전용량 · 시정수 · 정전기 방전
정자기학 자성 · 자기장 · 자기장 세기 · 자기 퍼텐셜 · 자기 쌍극자 모멘트 · 로런츠 힘 · 홀 효과 · 비오-사바르 법칙 · 앙페르 법칙 · 투자율
구현체 자석(전자석 · 영구 자석) · 발전기 · 전동기
회로이론 · 전자회로 개념 회로 기호도 · 전류 · 전압 · 전기 저항(비저항 · 도전율) · 전력(전력량) · 직류 · 교류 · 키르히호프의 법칙 · 중첩의 원리 · 삼상
소자 수동소자: 직류회로(휘트스톤 브리지) · RLC회로(커패시터 · 인덕터 · 레지스터), 변압기
능동소자: 전원 · 다이오드 · 트랜지스터 · 연산 증폭기
응용 및 심화개념
관련 학문 상대론적 전자기학 · 양자 전기역학 · 응집물질물리학 · 고체물리학 · 전자공학 · 전기공학 · 제어공학 · 물리화학 · 광학 · 컴퓨터 과학(컴퓨터공학)
토픽 이론 광자 · 게이지 장(역장 · 장이론) · 물질파(광전효과) · 다중극 전개 · 맥스웰 변형 텐서
음향 앰프(파워앰프 · 프리앰프 · 인티앰프 · 진공관 앰프) · 데시벨 · 네퍼
반 데르 발스 힘(분산력) · 복사 · 전도(전도체 · 열전 효과) · 초전도체 · 네른스트 식
광학 굴절(굴절률 · 페르마의 원리) · 스넬의 법칙 · 산란 · 회절 · 전반사 · 수차(색수차) · 편광 · 분광학 · 스펙트럼 · 렌즈(얇은 렌즈 방정식) · 프리즘 · 거울(구면 거울 방정식) · (색의 종류 · RGB)
전산 논리 연산 · 논리 회로 · 오토마타(프로그래밍 언어) · 임베디드 · 컴퓨터 그래픽스(랜더링) · 폴리곤 · 헥스코드
생물 생체신호(생체전기 · BCI) · 신경계(막전위 · 활동전위 · 능동수송) · 신호전달 · 자극(생리학)(베버의 법칙 · 역치)
기타 방사선 · 반도체 · 전기음성도 · 와전류 · 방전 · 자극 · 표피효과 · 동축 케이블 · 진폭 변조 · 주파수 변조 · 메타물질
관련 문서
물리학 관련 정보 · 틀:전기전자공학 · 전기·전자 관련 정보 · 틀:이론 컴퓨터 과학 · 틀:컴퓨터공학 }}}}}}}}}


1. 개요2. 주요 내용
2.1. 직류회로(DC Circuit)2.2. Op Amp2.3. 인덕터커패시터(또는 축전기)2.4. 교류회로(AC Circuit)2.5. 정상상태 전력 분석2.6. 자기 결합 회로2.7. 다상 회로2.8. 주파수 분석2.9. 라플라스 변환2.10. 푸리에 해석2.11. 이단자쌍 회로망
3. 교재4. 각종 시험에서의 출제
4.1. 국가기술자격시험4.2. 기타 시험
5. 관련과목6. 같이 보기

1. 개요

/ Network Analysis, Electrical Circuits

전하가 일정한 경로(회로)를 이동하는 과정에서 여러 가지 전기적 소자[1]를 사용했을 때 일어나는 현상을 설명하는 학문이다.

회로의 정의는도체와 전기적 소자를 활용하여 전하가 한 바퀴 이동하여 다시 원래 자리로 돌아오는 길을 만들었을 때 이것을 회로(Circuit)[2]라고 한다. 일반적으로 회로가 구성되지 않은 상태에서 교류 전압을 걸었을 때, 회로이론에서는 어떠한 일도 일어나지 않는다고 설명하지만 전자기학에서 배우듯이 실제 그렇지는 않다. 그러나 회로이론에서는 회로가 구성되었을 때만 어떤 현상이 발생한다고 가정한다. 실용적인 목적이 강한 학문이다. 그래서 회로이론에서 설명하는 것은 엄밀하게 따지고 들면 물리학적인 현상을 이해하는 데 있어서는 큰 의미가 없다.[3] 회로이론은 전자회로를 손쉽게 계산하고 설명할 수 있게 만들어진 모델이다. 왜냐햐면 회로를 해석할때 마다 물리학적인 내용들을 전부 고려할 수는 없기 때문이다. 3차원 공간에서의 맥스웰 방정식을 일일이 적용해서 푼다면 머리가 터질 것이 분명하기 때문이다.[4] 그래서 앞에서도 말했듯 과학자들과 공학자들이 만든 모델이 Lumped-element model(집중소자모델)이다. 이런 모델은 전기뿐만이 아니라 열역학, 기계, 음향, 유체에서도 사용된다.

전기 소자에는 주로 전압원(Voltage Source), 전류원(Current Source), 저항기, 인덕터, 커패시터 등이 있다. 대학에서 공부하는 경우 해당 과목에서 보통 트랜지스터와 같은 반도체소자까지 세세하게 분석하지는 않으며 이들의 경우 전자 회로 과목에서 다룬다. Op Amp의 경우 전기 소자는 아니지만, 이상 모형(Ideal Model)[5]을 사용하면 해석이 매우 쉽기 때문에 회로이론에서 다루기도 한다.

주로 전기전자공학과의 학생들이 배우는 전공 과목이다. 주로 회로이론의 커리큘럼은 전기회로 -> 논리회로 -> 전자회로로 배우는 게 대부분이고[6], 전자회로가 회로이론에서 최종적으로 배우는 만큼, 가장 어렵다.[7] 4년제 대학 기준으로 학부 2학년에 배우며[8]학교 커리큘럼에 따라서 한 학기 내지는 두 학기 동안 배운다.[9] 이론이나 개념 자체는 고교 미적분과 물리학을 충분히 이해 했고 추가로 대학 수학을 현재 배우는 입장이면 많이 어려운 편은 아니며, 회로 커리큘럼의 입문 과목이기 때문에 중학교 때 이미 배운 전압, 전류, 저항 쌩기초부터 다루므로 비전공자도 열심히만 한다면 충분히 들을 수 있는 과목이다. 근데 배우다 보면 회로 이론 관련 문제들이 엄청나게 어려워진다.

이름이 회로이론이지 실제로 보면 계산 문제의 난이도가 공업수학 급은 아니지만 그에 준하는 수준이다. 교류회로(AC Circuit)를 분석할 때는 복소수(페이저) 계산을 위해 공학용 계산기도 필요하다. 전기기사, 전자기사 자격증을 딸려면 넘어야 할 관문으로 경영학과에서 회계원리와 비슷한 포지션이다.

미적분, 극좌표계, 복소평면 등의 수학 지식을 요구하기 때문에 대학 미적분학은 기본적으로 할 줄 알아야 한다. 또한, 간단한 형태의 미분방정식 풀이 및 라플라스 변환, 푸리에 해석(푸리에 급수, 푸리에 변환)에 대한 지식도 요구한다.[10]

물리학적인 관점들을 최대한 축소시켜둔 과목이 회로이론이라고는 하지만 물리를 아예 모르면 소자의 수학적 모델에 대해 이해하지 못하고 단편적인 공식 암기만 할 수 밖에 없어 설명을 따라가기가 힘들 수 있다. 특히 일반물리학을 소홀히 해 축전지나 코일에 대해 버벅댄다면 매우 힘들 것이다. 대부분의 대학은 새내기 일반물리학 2학기 진도에 해당하는 내용을 배우고 수강할 것을 요구한다.

회로이론은 훗날 전기기사전기산업기사를 준비할 때, 다시 배우게 되는데, 전공으로써의 회로이론과 전기기사의 회로이론은 서로 약간의 차이가 있는 편이다. 용어가 서로 다르고, 전공과목으로서의 회로이론의 전압계는 모두 이상적인 전원으로 판단하여 전압계 내부저항을 0으로 생각하나, 전기기사 과목으로서의 회로이론은 전압계의 내부저항도 고려해야 한다. 그래서 1~2학년때 회로이론을 끝마치고 바로 자격증 공부를하면 멘붕에 빠진다.

2. 주요 내용

아래 내용은 복두출판사에서 출간한 알기 쉬운 회로이론 제 10판과 J. David Irwin 저 Engineering Circuit Analysis를 참고하여 작성되었다. Thomas L. Floyd 저 회로이론은 아래보다는 훨씬 쉽고 고등수준의 수학 정도만 알고 있으면 된다.

2.1. 직류회로(DC Circuit)

회로 이론의 핵심 파트 1

보통 맨 처음부터 바로 회로를 가르치지는 않고, 전자기학 등 여느 과목이 그렇다시피 SI 단위접두어, 전기의 개념이나 전압·전류의 정의처럼 전기·전자공학 전공과 관련된 모든 교재에서 기본 바탕이 되는 개념들을 먼저 소개한다. 내용 자체는 고등학교 수준의 기본적인 미적분이 들어간다는 것 빼고 중학교 과학 시간 때 배운 전기 회로에서 크게 나아간 것이 없다. 전류원의 개념이 나중에 직류회로 해석 시 은근히 걸림돌이 되는 편. 전압이 몇 V 걸리는지에 상관없이 전류원 주변에서 표시된 크기에 해당하는 전류가 흐른다고 가정해야 한다.

본격적인 회로 파트에서는 전자기학의 뉴턴 법칙이라 할 수 있는 키르히호프 법칙(Kirchhoff's Law)옴의 법칙(Ohm's Law)을 가장 먼저 배운다. 물론 똑같이 전자기학에서 핵심이 되는 이론인 맥스웰 방정식(Maxwell's Equations)에 비하면 매우매우매우매우 쉬운 개념이다.[11]어디까지나 개념만.

키르히호프 법칙의 경우 계산이 매우 많으며 연립방정식크라메르 공식을 이용해서 문제를 풀다보면 어느새 이면지가 새까매진다. KVL에서 전류가 시계로 흐르느냐 반시계로 흐르느냐에 따라서 식에 있는 전류 값의 부호가 결정된다. 하나라도 방향 잘못 잡으면 그냥 망한다. 그러니 이리 잡았다 저리 잡았다 하지 말고 방향을 일관성 있게 잡는 게 좋다.(예를 들면, 실제로 어떻게 흐르냐에 상관없이 시계방향으로 쭉 가정하든가...)

그 뒤로 이어지는 중첩 원리(Superposition Principle), 전원 변환(Source Transformation), 테브난 정리(Thevenin's Theorem, Thevenin Equivalent Circuit), 노턴 정리(Norton's Theorem, Norton Equivalent Circuit), 밀만 정리(Millman's Theorem)는 나중에 배울 전자회로 등에서도 계속 나오므로 정확히 짚고 넘어가야 한다. 중첩이나 밀만 등은 그럭저럭 이해하는데 테브난과 노턴 정리를 잘 이해하지 못하는 학생들이 많은 편. 그러나 테브난의 정리를 잘 이해했다면 그 어떤 복잡한 회로도 간단히 등가회로로 만들어서 풀 수 있기 때문에 배워놓자. 배워서 남주는 것도 아니고, 취업에 필수적인 전기기사 시험 회로이론 파트에서 나온다.

그 뒤에 나오는 최대 전력 전달(Maximum Voltage Transfer)의 경우 기본적인 개념은 알아둬야 하며[12], 마디 해석(nodal analysis)[13], 루프 해석(Loop analysis)[14], Y-Δ(Wye-delta) 변환은 이를 사용해서 회로를 해석할 경우 회로 해석 난이도가 급감하기 때문에 배워두면 좋지만, 이를 생략하고 넘어가는 강의도 많다고 한다. 다만 2학기 때 삼상회로를 공부한다면 아마 필요할 것이다.

2.2. Op Amp

Op Amp가 들어가 있는 회로의 해석을 배운다. Op Amp는 집적 회로(IC: Integrated Circuit)에서 약방의 감초처럼 등장하는 중요한 소자이기 때문에 해석하는 법을 반드시 익혀둬야 한다. 회로이론에서는 Op Amp를 이상 모형으로 근사화해서 해석하는 법을 배우게 되며[15] 반전 증폭기(Inverting Amplifier), 비반전 증폭기(Noninverting Amplifier), 가산증폭기(Summing Amplifier), 미분기(Differentiator), 적분기(Integrator), 비교기(Comparator) 등 Op Amp를 활용한 기초적인 회로를 배우게 된다.

2.3. 인덕터커패시터(또는 축전기)

인덕터와 커패시터에 대해서 배우는 파트. 여기서 말하는 인덕터가 바로 물리 시간 때 우리를 엄청나게 골머리 썩게 했던 코일의 정체다. 우리가 실생활에서 가장 많이 보는 인덕터를 이용한 대표적인 기계는 전봇대에 달린 변압기(Transformer). 회로이론 뒷장에서도 나오겠지만 상호 유도(Mutual Induction)의 원리를 이용해서 전압을 자유자재로 조절할 수 있다.

커패시터는 흔히들 충전기로 많이 교수님들이 비유한다. 과도응답(Transient Response) 또는 고유응답(Natural Response)을 분석하려면 미분방정식을 풀어야 하지만 해법이 정형화되어 있으므로 차근차근 풀어나가면 어렵지 않다. R-L 혹은 R-C 두 가지 요소를 사용해서 구성된 회로인 일차 회로(First-order Circuit) 또는 일차 시스템(First-order System)은 일계 선형 상미분방정식(First-order Linear Ordinary Differential Equation(ODE))으로 표현되고, 전압이나 전류가 시간에 따라 연속적으로 변한다는 것을 이용한 초기 조건(Initial Condition)을 줘서 풀게 되며, RLC 세 가지 요소가 모두 들어간 이차 회로(Second-order Circuit) 또는 이차 시스템(Second-order System)의 경우 이계 선형 상미분방정식(Second-order Linear ODE)으로 표현되는데, 감쇠비(, Damping Ratio), 고유 주파수(Natural Frequency)를 구하고 과도 감쇠(Overdamped)[16], 임계 감쇠(Critically Damped)[17], 미흡 감쇠(Underdamped)[18] 세 가지 케이스로 분류하는 게 핵심. 번역명 출처는 이곳. [19] 회로이론 후반부에서는 공업수학에서도 배우는 라플라스 변환으로 미분방정식 문제를 풀게 된다.
  • 커패시턴스: [math( {C = \varepsilon \frac{S}{d} } )]
  • 시정수(시(간)상수, Time Constant): [math( {\tau = C \; R} )]
  • 시간에 따른 커패시터에 쌓인 전압의 양: 충전 중이면 [math( { V \; \left(1-{e}^{ - \frac{t}{\tau}} \right) } )], 방전 중이면 [math( { V \; {e}^{ - \frac{t}{\tau}} } )] [20]

2.4. 교류회로(AC Circuit)

회로 이론의 핵심 파트 2

앞 단원에서는 인덕터나 커패시터가 들어간 회로에 직류 입력이 들어간 경우의 과도응답과 정상상태(, Steady State)를 분석했지만, 이번 단원에서는 교류 신호를 입력한 경우의 정상상태를 분석하게 된다.

교류회로의 풀이법으로는 삼각함수를 이용한 풀이법, 복소지수함수를 이용한 풀이법, 위상자 또는 페이저(Phasor)를 이용한 풀이법이 있다. 페이저는 복잡한 삼각함수 연산을 복소수 연산으로 대체하는 치트키 수준의 위력을 발휘하는 개념이다. 삼각함수를 이용한 풀이법은 삼각함수의 덧셈정리삼각함수의 미적분을 기본적으로 알고 있어야 하며, 삼각함수의 공식들이 복잡하기 때문에 삼각함수를 사용하여 쌩으로 교류회로를 풀게 되면 수식이 매우 길어진다. 이를 오일러의 공식을 이용한 복소지수함수로 풀게 되면 수식이 약 절반 정도로 줄어들게 되고, 이를 좀더 간략화해서 페이저를 사용하게 되면 여기서 수식이 또 절반으로 줄어들게 된다. 따라서 직병렬회로 정도는 삼각함수 정도로 해석할 수 있지만, RLC가 복잡하게 막 얽혀있는 회로를 해석할 때는 페이저를 사용하지 않으면 답이 없다.

위상(Phase)이라는 개념이 사실상 이 단원의 전체를 꿰뚫는 키워드. 보통 cos(ωt + θ)에서 θ가 양수이면 원래 것보다 위상이 이르고[21], θ가 음수이면 기존의 것보다 위상이 늦다.[22] 뭔가 헷갈려 보이지만 양수는 (+) 즉, 다른 애들보다 몇 미터 앞에 있으니까 그만큼 딴 애들보다 일찍 도착하고, 음수는 (-)로 다른 애들보단 몇 미터 뒤에 있으니까 그만큼 딴 애들보다 늦게 도착한다 정도로 외워두면 편하다.[23]

직렬회로 풀이는 대부분 아래처럼 정형화 되어있다.
  1. (각)주파수[24]를 집어넣어서 리액턴스를 구한다.
  2. 리액턴스와 저항값을 이용해서 임피던스(Z: Impedance)를 구한다.
  3. [math( V=IZ )]를 이용해 V, I를 구하거나, [math( \displaystyle \theta = \arctan \frac{X_{L} - X_{C}}{R} )]를 이용해 위상을 구한다.
  4. 만약 실효치(Effective Value)를 구하라고 하면 순시치(Instantaneous Value) VI에서 첨두치(Peak Value)만 √2로 나눠주면 된다.[25]

병렬회로같은 경우, 직렬회로에 비해 수식들이 직관적이지 못해 상당히 헷갈리는 경우가 있다. 때문에 무작정 저항에 대한 식으로 나타내려 하지말고, 그냥 전류에 대한 식으로 그대로 외워두는 것이 좋다. 나중에 어드미턴스(Y: Admittance)를 배우기는 하지만, 임피던스 직병렬을 계산하는 게 아닌 이상 오히려 그걸 쓰는 게 헷갈릴 위험이 크다.

각 소자 저항을 구하는 과정은 직렬과 같다. 아래는 그 다음 과정부터
  1. 각 소자에 걸리는 전류를 구한다. 예를 들어 [math( I_L )]을 구하려면 [math( \displaystyle I_L = {V \over X_L} )]을 이용해 구한다.
  2. 구한 전류 값을 [math( I = \sqrt{ {I_R}^2 + ( I_L - I_C )^2 } )]에 집어넣어 전류 실효치를 구한다.
  3. 위상차는 [math( \displaystyle \theta = \arctan \frac{I_{L} - I_{C}}{I_R} )]로 값을 구하면 된다. 이 때 부호를 주의해야 한다. 반드시 인덕터 값에서 커패시터 값을 빼야 한다.
  4. 순시치 [math( i = I_{p} \sin (\omega t + \theta) )] 여기서 [math( I_p )]는 (2)에서 구한 걸 √2 곱하고, 각주파수(ω)는 주파수를 이용해 구한다.([math(\omega = 2 \pi f)])

R/L/C 직류를 배운 상태에서 병렬회로를 공부하려는 사람은 쌍대성 원리(Duality Principle)상대성 원리인줄라는 것을 미리 알아두면 쉽게 직렬회로로부터 병렬회로 식을 외울 수 있다. 교재에서는 어드미턴스라는 것을 이용해 간접적으로나마 병렬과 직렬의 관계를 이해할 수 있게 해준다.

일반화된 풀이법은 다음과 같다. 예를 들어 소자의 개수가 10개가 넘어가고 복잡하게 얽혀있는 회로를 해석하려면 이 방법을 사용하면 된다. 이 방법만 알고 있으면 위의 직병렬회로 풀이법을 달달 외워서 풀 필요가 없다.
  1. 입력 전압이나 입력 전류를 삼각함수 형태에서 페이저 형태(복소수 표현 방식 중 극형식)로 크기(Magnitude)와 위상만 따로 떼서 변환한다.
  2. 각 소자의 임피던스(Z)를 구한다. [math(Z_{\rm R} = R)], [math(Z_{\rm L} = j \omega L)], [math(Z_{\rm C} = \frac{1}{j \omega C})]식을 사용하면 된다. 임피던스는 복소수이므로 이를 극형식으로 구해서 크기와 각을 표시할 수도 있다. 공학용 계산기에는 복소수의 직교형식(a+bi)과 극형식(r∠θ) 변환 기능이 있으므로 이를 사용하면 매우 쉬운 작업이다. 싸구려 공학용 계산기로는 어림도 없다. 주의할 개념으로 임피던스는 복소수이고 극형식으로 표현 가능하지만 페이저가 절대 아니다. 페이저는 정현파 함수에 대해서만 표현할 수 있는 도구이기 때문.
  3. [math( V=IZ )]식과 키르히호프 법칙, 마디 해석, 망로 해석, 중첩 원리, 테브난·노턴 등가 회로, 전원 변환 등 직류회로 해석에서 사용되는 방식을 그대로 적용해서 회로를 해석한다. 연립방정식에서 계수가 복소수라는 점만 제외하면 직류회로 해석 과정과 100% 동일하다. 필요에 따라 페이저와 임피던스를 극형식과 직교형식 사이에서 변환한다. 이때 공학용 계산기가 유용하다.
  4. 결과치를 페이저에서 시간에 대한 함수, 즉 삼각함수 형태로 변환한다.

고등학교 물리2에 나오는 내용이기도 하다. 어디까지나 기초 부분만.

2.5. 정상상태 전력 분석

순시 전력(Instantaneous Power), 평균 전력(Average Power), 역률(pf: Power Factor)[26], 제곱평균제곱근(rms: Root Mean Square), 복소 전력(S: Complex Power)[27]의 개념과 교류회로에서 복소 전력을 최대로 전달하려면 회로를 어떻게 설계해야 하는지[28], 역률을 개선하려면 어떻게 해야 하는지에 대해 다루는 파트이다.[29]

2.6. 자기 결합 회로

코일 두개가 자기적으로 결합되어 있는 유도 결합 회로의 해석을 배우는 파트이다. 상호 인덕턴스(Mutual Inductance), 점 표시 규약(Dot Convention)의 정의와 페이저를 이용한 유도 결합 회로의 해석, 실제 변압기, 이상적인 변압기 모형 등을 배우게 된다.

2.7. 다상 회로

평형 삼상 회로(balanced three-phase circuit)와 같은 다상 회로(polyphase circuit)의 기초를 배우는 단원이다. 델타(Δ) 결선(delta connection), 와이(Y) 결선(wye connection), 다상 회로에서의 전력을 계산하고 선간전압(line voltage)과 상전압(phase voltage), 선간전류(line current)와 상전류(phase current)를 결정하는 방법과 삼상 회로에서의 역률 개선(Power Factor Correction, PFC), 대칭좌표법 등을 배우게 된다.

다상회로는 전력 분배 시스템의 중요한 부분이며, 장거리에 걸쳐 전력을 전송하는데 널리 사용된다. 전기공학과에서 주로 다루고 전자공학과나 정보통신공학과에서는 자격증 시험을 빼면 별로 중요하지는 않다.

2.8. 주파수 분석

회로의 주파수 응답인 위상응답과 진폭응답을 계산, 공진회로를 해석, RLC소자를 사용하여 필터 회로망을 구성하는 것을 배운다.

그 유명한 극점(pole)[30]과 영점(zero)[31]를 배우는 단원. 이제부터 입력 주파수가 한 개가 아닌 상황을 다룬다. 회로의 전달 함수(transfer function)를 구하는 법과, 전달 함수로부터 크기(magnitude)와 위상(phase) 그래프를 대략적으로 빠르게 그릴 수 있는 방법인 보드 선도(bode plot)을 먼저 배운다. 그 이후에는 공진 회로에서 양호도(Quality factor, Q), 대역폭(bandwidth), 공진주파수(resonant frequency)[32]를 구하는 법과 아날로그 필터의 주파수 특성 구하는 법을 집중적으로 공부하게 되는데, 후반부에서는 OP 앰프를 이용한 능동 필터와 OTA까지 구경해 볼 수 있다.

아날로그 회로 설계 관련 일을 하려고 한다면 잘 알아두어야 할 단원이다.

2.9. 라플라스 변환

시스템의 주파수적인 특성과 안정성을 동시에 관찰할 수 있는 매우 중요한 도구이다. 조금 과장해서 회로 해석에서, 정확히는 교류회로에서 라플라스 변환만 사용할 줄 알면 과도상태든 정상상태든 모조리 구해버릴 수 있으므로 미분방정식 풀고 할 필요 없이 한방에 모든 것을 해결할 수 있다.

라플라스 변환을 회로 해석에 적용하는 방법은 크게 두가지가 있다. 한 가지 방법은 s-도메인 회로 해석인데, 회로 소자의 시간 도메인과 s-도메인간의 관계를 달달 외운 후 회로를 s-도메인 회로로 변환해서 해석하는 방법이다. 다른 방법으로는 전달 함수를 이용하는 것인데, 회로의 전달함수를 구하고 입력 신호를 라플라스 변환해서 전달함수와 곱한 다음 라플라스 역변환을 해서 과도상태와 정상상태를 구하는 방법이다. 이후 신호 및 시스템 과목에서[33] 해당 분석법을 보다 심도 있게 배우게 되고, 제어공학 등의 과목에서 활용된다.

2.10. 푸리에 해석

푸리에 해석은 시스템의 주파수적인 특성을 집중적으로 관찰할 수 있는 매우 중요한 도구인데, 이를 회로 해석에 적용하는 법을 배우는 파트이다. 푸리에 급수를 사용해서 사각파 등의 임의의 주기적인 파형이 회로에 인가되었을 때의 출력값을 구하는 방법과, 푸리에 변환을 회로 해석에 적용해서 정상상태를 미분 방정식을 풀지 않고 구하는 방법을 배우게 된다.

2.11. 이단자쌍 회로망

이단자쌍 회로망(사단자 회로망, two-port or four-terminal network)의 해석을 위해 어드미턴스 파라미터, 임피던스 파라미터, 하이브리드 파라미터, 트랜스미션 파라미터와 파라미터의 변환 방법을 배우게 되는 파트이다.

3. 교재

  • Nilsson and Riedel (2015) Electric Circuits, Pearson

4. 각종 시험에서의 출제

4.1. 국가기술자격시험

4.2. 기타 시험

  • 변리사 - 2차 선택과목 중 하나이다. 한때(2017년 이전 선택과목 P/F 제도가 도입되기 전) 상대적으로 쉬운 난이도와 자료가 많다는 점 등으로 전기전자공학과 계열 이외의 응시자들도 상당수가 선택했던 대세과목이었으나 2018년 P/F 제도 도입 이후 디자인보호법/저작권법에 밀리면서 선택자 수가 점점 줄어들더니 2024년에는 선택자 수가 60여명까지 줄어들어서 다른 공학과목과 마찬가지로 극소수가 되었다.

5. 관련과목

  • 공학수학 - 회로의 수학적 분석을 위해 필요하다.
  • 전자 회로 - 이걸 공부하려면 회로이론을 먼저 들어야한다.
  • 논리 회로 - 디지털 회로에서 많이 쓰이는 플립플롭, 낱개 게이트 소자의 특성부터 가산기, 멀티플렉서 등의 일반적 디지털 회로의 해석법과 구성을 배운다. 일반적인 학부 과정에서는 낱개 소자들을 만드는 반도체소자의 회로 구성까지는 이 과목에서 다루지 않는다.

6. 같이 보기


[1] 보통 회로이론에서는 수동소자(Passive Element) 위주로 다루며, 능동소자는 수동소자의 결합으로 근사해서 분석한다. 이때 수동소자는 저항기(R: Resistor), 인덕터(L: Inductor), 커패시터(C: Capacitor)처럼 전류를 단순히 흡수, 소모, 저장 또는 흘려보내기만 하는 전기적 소자를 말하고, 능동소자(Active Element)는 연산 증폭기(Op Amp: Operational Amplifier), 진공관, 다이오드, 트랜지스터처럼 미약한 신호를 증폭하는 소자를 말한다.[2] 폐(회)로 또는 루프(Loop)[3] 예를 들어서 일반적으로 회로를 만들면 전원에서 나온 전자가 포텐셜 에너지를 지닌 채 도선을 타고 저항을 거쳐서 다시 전원으로 돌아오며, 이 때의 포텐셜 에너지가 바로 전류의 일률이 된다. 라고 해석하는데, 실제로 도선 속 전자의 이동속도는 매우 느려서 이런 해석이 의미가 없다. 오히려 포인팅 벡터를 이용하여 해석하면 도선 속 전자의 미약한 움직임에 의해서 발생한 자기장이 전원의 전기장과 상호작용하여 도선 외부에 전자기장을 형성하고 해당 전자기장이 에너지를 옮긴다는 것이 유도된다.[4] 그래도 맥스웰 방정식을 아예 무시할 수 없는 게, PCB를 설계할 때는 도선에서 발생하는 전자기장이 회로에 영향력을 미치기 때문이다.[5] 두 가지 가정을 만족시켜야 한다.
1. Op Amp 양쪽 입력으로 들어오는 전류는 없다.([math(i_+ = i_- = 0)])
2. Op Amp 양쪽 입력의 전위차는 0이다.([math(v_+ = v_-)], 즉 [math(\Delta v = 0)])
[6] 다만, 논리회로를 먼저 배우고 전기회로를 배우는 경우도 있고, 둘이 동시에 배우는 경우도 있다.[7] 일단 해석을 하는 데도 애를 먹는 경우가 태반이고, 무엇보다 전기회로 + 논리회로 까지 짬뽕 된 형태라 계산을 하는 데도 애를 먹는 경우가 종종 있다. 사실 대부분이 계산에서 애를 먹는 게 함정[8] 전문대는 1학년 때 배운다. 아무래도 이 곳은 2년제인지라 압축적으로 배워야 하기에...[9] 두 학기 동안 배운다면 앞 학기는 직류·교류회로의 기본적인 분석을 다루고, 뒤 학기에는 삼상회로(Three-phase Circuit)와 주파수응답(Frequency Response), 신호처리(Signal Processing)의 기본 이론 등을 다룰 것이다. 한 학기만 배운다면 당연히 이 중에서 일부가 빠질 것이다.[10] 대부분은 2학년 때 공업수학을 병행 수강하므로 크게 걱정하지 않아도 된다. 선형대수학을 알아두면 이해에 매우 큰 도움이 돼서 사실상 필수라 봐도 된다. 다만 선형대수학을 모른다고 배우는데 크게 지장을 주지 않지만 벡터는 어차피 고교 물리학과 기하에서도 다루니 그렇다 쳐도 행렬과 텐서의 대한 개념을 모르는 상태면 교류회로에서의 해석에 애를 먹을 순 있다.[11] 애초에 옴의 법칙이 맥스웰 방정식에서 파생된 법칙이다.[12] 전압과 저항에 관하여 전력 공식을 세우고 부하 저항에 대해서 미분하면 테브난 등가 저항과 부하 저항의 값이 같을 때 전력이 최대로 전달된다는 것을 알 수 있다.[13] KCL이 가면만 바꿔쓰고 등장한 것이다.[14] 망로 또는 메쉬 해석(Mesh Analysis)이라고도 한다. KVL이 가면만 바꿔쓰고 등장한 것이다.[15] 비이상 모형(Nonideal Model)의 경우 전자 회로 레벨로 올라가야 자세히 다루기 시작하고, Op Amp의 내부 구조는 3학년~대학원 레벨에서 다룬다.[16] 이차 회로 특성방정식(Characteristic Equation)의 판별식(D: Discriminant)이 양수(D>0)인 경우(즉, 서로 다른 두 실근을 가지는 경우)[17] 이차 회로 특성방정식의 판별식이 0(D=0)인 경우(즉, 중근을 가지는 경우)[18] 이차 회로 특성방정식의 판별식이 음수(D<0)인 경우(즉, 서로 다른 두 공액복소근을 가지는 경우)[19] 참고로 이런 세 가지 종류의 감쇠현상은 고전역학 에서도 배우게 된다. 조화 진동자 항목 참조.[20] 이를 통해 충전, 방전 중일 때의 시간에 따른 전하량과 전류도 구할 수 있다.[21] 위상차에서는 원래 벡터보다 θ만큼 반시계 방향으로 돌아감. 반시계 방향을 양의 방향으로 정의했기 때문이다.[22] 위상차에서는 θ만큼 시계 방향으로 돌아간다.[23] 보통 유도 리액턴스(Inductive Reactance)는 위상이 빠르고, 용량 리액턴스(Capacitive Reactance)는 위상이 느리다. 영미권에서는 이를 "In C, I leads V. V leads I if L.(CIVIL)"로 외운다. 이를 잘 맞추어 허수부를 0으로 만드는 게 공진(Resonance)이라고 한다.[24] 주파수(f)와 각주파수(ω) 사이에는 ω=2πf 관계가 성립한다.[25] 하지만 문제에서 VI가 함수가 아닌 상수로 준다면 이미 그것 자체가 실효치이므로 크게 신경 쓸 필요가 없다.[26] 평균 전력을 피상전력(Papparent: Apparent Power)으로 나눈 값. 이는 임피던스의 위상에 코사인 함수를 취한 값([math(cos(\theta_z))])이다. 피상전력의 단위로는 평균 전력 단위 W(Watt)와 구분하기 위해 VA(Volt-amperes)를 쓴다.[27] 여기에서 같이 따라나오는 개념이 유효전력(P: Active Power)과 무효전력(Q: Reactive Power)이다. 그리고 S = P + jQ와 같은 형태로 결합한다. 참고로 복소 전력의 단위는 피상전력과 같은 VA, 유효전력의 단위는 W, 무효전력의 단위는 var(Volt-amperes Reactive, '바'라고 읽는다.)이다. 피상전력이 복소 전력의 크기, 유효전력이 평균 전력이다.[28] 부하의 임피던스가 테브난 등가 임피던스의 공액복소수(Complex Conjugate)가 돼야 복소 전력 전달이 최대가 된다.[29] 보통 커패시터를 병렬로 더 달아 무효전력을 상쇄하는 방향으로 간다.[30] 분모(denominator) 다항식의 근[31] 분자(numerator) 다항식의 근[32] [math(\omega = 1/sqrt(LC))][33] 사실 회로 자체를 분석하는 게 아니라 가상의 시스템을 가정하고 분석을 한다. 실습을 하더라도 그냥 Matlab을 이용하는 게 보통이다. 특히 2000년대 이후로는 디지털 통신이든 아날로그 통신이든 통신분야에서는 DSP를 사용하는 것이 일반적이기 때문에 신호처리 과목에서 아날로그 신호 처리는 사실상 배제된 감도 있다.[34] 그렇다고 이 자격증을 따고 나서 2년 내에 회로이론이나 제어공학이 출제되는 타 자격증을 응시한다 해도 해당 과목이 면제되지 않는다.[35] 그렇다고 이 자격증을 따고 나서 2년 내에 전자기학이나 회로이론이 출제되는 타 자격증을 응시한다 해도 해당 과목이 면제되지 않는다.[36] 그렇다고 이 자격증을 따고 나서 2년 내에 회로이론이 출제되는 타 자격증을 응시한다 해도 해당 과목이 면제되지 않는다.