1. 개요
連鎖法則 / chain rule합성함수를 미분하는 공식이다. 곧잘 체인룰(chain rule)로 언급된다. 합성함수의 미분법이라고도 한다. 연쇄 법칙을 반대로 적용한 것이 치환적분법이다.2. 일변수함수
겉미분, 속미분 등의 말로 배우는 '합성함수의 미분'이 바로 연쇄 법칙을 간편한 형태로 적용한 것이다.[math( f )]와 [math( g )]가 미분가능한 함수라고 하자. [math( y=f(u) )]이고 [math( u=g(x) )]일 때, [math( y )]는 [math( x )]로 미분가능하고 다음이 성립한다.
[math(\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} )]
이때 [math(\displaystyle \frac{\mathrm{d}u}{\mathrm{d}x})]를 흔히 속미분이라고 부른다.3. 다변수함수
[math( u )]가 [math( x_1, x_2, \cdots , x_n )]에 대한 미분가능한 [math( n )]변수 함수이고, [math( x_j )]가 각각 [math( t_1, t_2, \cdots , t_m )]에 대한 미분가능한 [math( m )]변수 함수이면, [math( u )]는 [math( t_1, t_2, \cdots, t_m )]에 대한 미분가능한 함수이고, 각 [math( i = 1,2, \cdots , m )]에 대하여 다음이 성립한다.[math(\displaystyle \frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i})]
다변수의 미분을 선형 변환 혹은 행렬로 이해했다면 다음의 버전이 가장 일반적이다.
유클리드 공간의 열린 집합 [math(X, Y, Z)]에 대해 [math(g : X \rightarrow Y)], [math( f : Y \rightarrow Z)]가 각각 점 [math(x_0 \in X)], [math(y_0 = g(x_0))]에서 미분가능할 때, [math( h = f \circ g : X \rightarrow Z)]도 [math(x_0)]에서 미분가능하고, 그 도함수는 다음을 만족시킨다.
[math( \displaystyle Dh = Df \circ Dg )]
여기서 [math(Df, Dg)]를 야코비 행렬로 보고 행렬곱을 계산하면 위의 버전을 얻을 수 있다.4. 주의점
흔히 고등학교 과정에서 나와 있는 1변수 연쇄법칙의 증명은 엄밀하지 않은 경우가 대부분이다.[math(\displaystyle \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = \lim_{x_1 \rightarrow x} \frac{f(g(x_1)) - f(g(x))}{g(x_1) - g(x)} \frac{g(x_1) - g(x)}{x_1 - x} )]
언뜻 보면 완벽해 보이지만 이건 [math(g(x_1) -g(x))]가 도중에 0이 되는 경우는 우변의 분수식을 설명할 수 없다. 이것을 해결하기 위한 별도의 트릭을 사용하거나, 아니면 그냥 미분계수에 분수를 사용하지 않는 엡실론-델타 버전에 기대는 (즉 [math( |f(x+h) - f(x) - hf'(x)| < \epsilon h)] 이런 느낌으로) 방법이 있지만 첫번째는 번거롭고, 두번째는 고교과정 외이므로 보통 생략된다.- 첫 번째 방식을 이용한 일변수 연쇄법칙의 증명(접기/펼치기)
- 보조함수 [math(F)]를[math(\displaystyle F(y) = \begin{cases} \displaystyle \frac{f(y)-f(g(x))}{y-g(x)} & y \neq g(x) \\ f'(g(x)) & y = g(x) \end{cases} )]라 정의하자. [math(f)]가 [math(g(x))]에서 미분가능하다는 가정을 이용하면 [math(F)]의 연속성을 증명할 수 있다. 이제 위의 분수식하고 거의 흡사하지만 약간 다른 다음의 식을 생각한다.[math(\displaystyle \frac{f(g(x_1)) - f(g(x))}{x_1 - x} = F(g(x_1))\frac{g(x_1) - g(x)}{x_1 - x} )]만약 [math(g(x_1) \neq g(x))]이면 [math(F)]의 정의를 대입하면 성립하고, [math(g(x_1)=g(x))]라면 양변은 모두 0이니까 성립한다. 즉 위 식은 항상 맞으면서도, 이제는 모든 함수들이 연속이기 때문에 [math(x_1 \rightarrow x)]로 극한을 보낼 수 있다. 그러면 우변은 [math(F(g(x))g'(x) = f'(g(x))g'(x))]가 되어 증명 끝.
- 두 번째 방식을 이용한 다변수 연쇄법칙의 증명(접기/펼치기)
- 다음 일반적인 미분의 정의를 사용한다. [math( g: X \rightarrow Y)]가 [math(x_0 \in X)]에서 미분가능하다는 것은, 임의의 [math(\epsilon>0)]에 대해 [math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon |x_1 - x_0| )]이 만족되는 [math(x)]의 근방이 존재한다는 것이다. 여기서 [math(Dg(x_0))]는 선형사상으로 간주. 이제 [math(y_0 = g(x_0), y_1 = g(x_1))]과 [math(h = f \circ g)]에 대해, 다음의 등식을 생각한다.[math( \displaystyle h(x_1) - h(x_0) - Df(y_0) Dg(x_0) (x_1 - x_0) = \left( f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0) \right) + Df(y_0) \left(g(x_1) - g(x_0) - Dg(x) (x_1 - x_0) \right) )]임의의 [math(\epsilon_1, \epsilon_2>0)]에 대해서,[math( |f(y_1) - f(y_0) - Df(y_0) (y_1 - y_0)| < \epsilon_1 |y_1 - y_0| )]가 만족되는 [math(y_0)]의 근방을 [math(V_1)],라 하고, [math(U = g^{-1}(V_1) \cap U_1)]으로 잡자. 그러면 [math(U)] 위에서
[math( |g(x_1) - g(x_0) - Dg(x_0) (x_1 - x_0)| < \epsilon_2 |x_1 - x_0|)]가 만족되는 [math(x_0)]의 근방을 [math(U_1)][math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \epsilon_1 |y_1 - y_0| + \epsilon_2 \| Df(y_0) \| |x_1 - x_0| )]이고 특히 [math( |y_1 - y_0| \le (\|Dg(x_0)\| + \epsilon_2) |x_1 - x_0|)] 이므로,[math( \displaystyle |h(x_1) - h(x_0) - Df(y) Dg(x) (x_1 - x_0) | < \left( \epsilon_1( \|D(g(x_0)\| + \epsilon_2) + \|Df(y_0)\| \epsilon_2 \right) |x_1 - x_0| )]을 얻는다. 이제 주어진 [math(\epsilon>0)]에 대해 [math(\epsilon_1,\epsilon_2 >0)]을 적절히 잡으면, 선형사상 [math( Df(y) Dg(x) )]가 [math(h)]의 미분계수의 조건을 만족한다는 것을 증명할 수 있다.