수와 연산 Numbers and Operations | |||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#765432> 수 체계 | 자연수 (수학적 귀납법 · 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 (정수가 아닌 유리수) · 실수 (무리수 · 초월수) · 복소수 (허수) · 사원수 | |
표현 | 숫자 (아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법(자연어 수 표기법 · 과학적 표기법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 ·BEAF · 버드 표기법) · 진법 (십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 (분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 {유한소수 · 무한소수 (순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수 | ||
연산 | 사칙연산 (덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 (이중근호) · 거듭제곱 · 로그 (상용로그 · 자연로그 · 이진로그) · 검산 · 연산자 · 교환자 | ||
방식 | 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자 | ||
용어 | 이항연산(표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
기타 | 수에 관련된 사항 (0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산 (48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기(바퀴 이론) · 0의 0제곱 | }}}}}}}}} |
1. 개요
交換法則 / commutativity원소 [math(a)], [math(b)]를 포함한 집합 [math(S)]와 연산 [math(*)] 가 정의되어 있을 때, [math(a*b=b*a)] 가 성립하면 집합 [math(S)]에서 연산 [math(*)] 에 대해 교환법칙이 성립한다고 한다.
반대로 [math(a*b\neq b*a)] 가 되는 반례가 하나라도 나온다면 교환법칙은 일반적으로 성립하지 않는다.
2. 교환법칙이 일반적으로 성립하는 연산
특별한 언급이 없는 한 연산을 다루는 집합 S는 복소수 범위이다.- [math(+)] (덧셈) 예시로 2+4=6, 4+2=6
- [math(\times)] (곱셈) 예시로 2×3=6, 3×2=6
- 지수와 로그(수학)의 곱
- [math(\max(a,b))] (둘 중 큰 수를 고르는 연산: 실수 범위)
- [math(\min(a,b))] (둘 중 작은 수를 고르는 연산: 실수 범위)
- [math(\cdot)] (내적: 벡터 범위)
- [math(*)] (합성곱: 라플라스 변환 관련 연산)
- [math(\circ)] (아다마르 곱: 행렬 범위)
- [math(\#)] (연결합: 위상)
3. 교환법칙이 일반적으로 성립하지 않는 연산
특별한 언급이 없는 한 연산을 다루는 집합 S는 복소수 범위이다.- [math(-)] (뺄셈): [math(a-b)], [math(b-a)]는 서로 부호가 반대이다.
- [math(\div)] (나눗셈, 당연히 0으로 나누면 안 된다.): [math(a\div b)]와 [math(b\div a)]는 서로 역수 관계이다.
- [math(^\wedge)] (제곱)[증명1]
- [math(\uparrow)] (테트레이션)
- [math(\circ)] (둘 이상의 함수의 합성)
- [math(\otimes)] (외적): 벡터 범위, [math(\mathbf a\otimes\mathbf b)]와 [math(\mathbf b\otimes\mathbf a)]는 크기가 같지만 방향이 반대로 뒤집힌다.
- [math(\times)] (곱셈: 곱셈이 정의된 행렬 범위)
- [math(\times)] (곱셈: 사원수 범위)[증명2]
- [math(+/\times)] (덧셈/곱셈): 무한서수가 포함된 연산
- [math(\otimes)] (텐서곱: 텐서 범위)