최근 수정 시각 : 2024-04-17 14:15:00

태양광 발전


파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
태양의 열에너지를 이용한 발전 방식에 대한 내용은 태양열 발전 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
⚡발전 방식
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -6px -1px -11px; word-break: keep-all"
<colbgcolor=#edd72d,#c4b32b> 연소 <colbgcolor=#fff,#2d2f34>화력 발전 (화력발전소 · 화석연료 · 바이오매스 · e-Fuel · 열병합 발전)
원자력 핵분열 발전 · 핵융합 발전
재생에너지 수력 발전 · 조력 발전 · 파력 발전 · 태양광 발전 · 태양열 발전 · 풍력 발전(해상풍력발전) · 지열 발전
기타 인력 발전 · 연료전지 발전(SOFC) · 열전 발전 · 압전 발전 · MHD 발전 · 에너지 저장 체계
}}}}}}}}} ||

1. 개요2. 원리3. 정책 현황
3.1. 국제 현황3.2. 한국 내 현황3.3. 유럽 현황3.4. 타국 현황
4. 산업 현황5. 발전유형
5.1. 자가소비용5.2. 발전소용5.3. 해상 태양광5.4. 수상 태양광5.5. 연구중인 유형
6. 전력 공급 방식 유형7. 장단점 비교
7.1. 장점
7.1.1. 범용성7.1.2. 편리성7.1.3. 높은 단위 면적당 에너지 생산량7.1.4. 의외로 긴 수명7.1.5. 낮아지는 발전단가
7.2. 단점
7.2.1. 대한민국에서의 비용효율 타당성7.2.2. 발전 변동성7.2.3. 온도에 따른 효율 감소7.2.4. 산림 파괴7.2.5. 시공업체의 난입 및 불량
8. 논란과 오해
8.1. 중금속 함유
9. 태양광 패널 유형 전망10. 기타

1. 개요

/ Photovoltaics

재생에너지햇빛을 이용한 발전방법. 태양 에너지를 전기에너지로 변환한다. 아인슈타인에게 노벨상을 안겨다 준 광전효과를 기반으로 한다. 자세한 것은 아래에 서술되어있는데, 광전효과에 따르면 빛은 에너지를 가지고 있고, 광자가 특정 물질에 닿으면 전기에너지로 변환될 수 있다. 따라서 태양광발전에서는 태양광에 반응하는 전지모듈, 즉 햇빛전지를 사용한다. 따라서 저장된 물을 태양열로 끓여 이것으로 터빈을 돌리거나 열에너지를 그대로 사용하는 태양열 발전과는 다르다.

2. 원리

광기전효과[1]라는 미시 단계의 물리적 변환을 이용하여 전기를 생산한다. 2015년 말 현재 가장 고효율이 약 50~52%에 달한다. 참고이 정도면 다른 발전방식에 비견할 만하나 고효율 방식은 제조비가 비싸다. 상용 셀이나 모듈은 15~22% 정도이며##, 저가양산품은 그보다 떨어진다. 바로 사용하는 가정용, 주택용은 무시해도 되지만 만약 도심에서 멀리 떨어진 곳에서 생산해서 송전하게 된다면 저장이나 송전 등에서 5~10% 정도의 추가 효율 감소가 있을 수 있다. 다만, 태양광 에너지 자체는 완전 무상이기 때문에 땅 값이나 면적 문제만 아니라면 어느 정도 무시된다.

탠덤 구조처럼 여러 셀을 적층하면 고효율은 달성할 수 있다. 그러나 비싼 제작비 탓에 고효율 패널은 가격보다는 효율이 중요한 특수목적용이 많다. 실리콘같이 흔한 재료가 아닌 특수 재료로 만들어진다. 순수하게 '최종 효율 50%의 대규모 태양광 발전' 같은 형태는 현재는 상용화하기 어렵다. 적층구조 등이 아닌 단일 흡수층으로 이루어진 전지의 효율은 약 35% 정도 내외이며, 이 한계치는 이론상 shockley-queisser limit으로 잘 알려져 있다. 특수한 경우가 아닌 이상 경제적 혹은 기술적 문제로 적층구조를 이용하지 않기 때문.

세계 태양광 자원 지도

3. 정책 현황

3.1. 국제 현황

2015년 파리기후협약에 따라 세계 각국은 탄소배출량을 대폭 감축하여야하는 상황이다. 미국도널드 트럼프 대통령의 일방적인 결정으로 기후협약에서 탈퇴하였지만 중국을 포함한 나머지 국가들은 미국 없이도 협약 준수할 것을 선언하였다. 거기에 2020년 미국 대통령 선거에서 당선된 조 바이든은 취임하는 즉시 기후협약에 재가입하겠다는 입장을 밝혔다.

태양광 발전은 대표적인 재생에너지이며, 풍력발전에 비해 설치 요건이 널널하기 때문에 주목받고 있다.

3.2. 한국 내 현황

연도별 태양광 발전량[2]
해당연도‘16년‘17년‘18년‘19년'20년‘21년‘22년‘23년‘24년‘25년
생산량 (TWh)5.517.7410.1714.1919.3424.7230.73

2010년 이명박 정부는 태양광을 제2의 반도체 산업으로 육성한다는 계획으로 신재생에너지 분야에 40조원을 투입해 2015년 세계 5대 강국으로 도약한다고 발표했다.# 대한민국이 주도적으로 세계에 제시한 녹색성장이라는 개념 중 일부정책이다.

2015년 박근혜 정부의 국무회의에서 2030년 탄소배출 전망치 대비 37%를 추가로 감축하기로 확정하였고 외교부에서도 공표하였다. 때문에 화석연료 발전 비중을 극단적으로 줄여야하는 상황이지만, 탈원전 정책으로 인해 원자력 발전소 증설은 요원해졌다. 원전을 제외한 남은 선택지 중에서 그나마 현실적인게 태양광 발전이고, 정부에서도 적극적으로 밀어주고 있는 상황이다.

첫째로 정부는 발전사업자에게 태양광발전을 포함한 재생에너지를 일정량 법으로 강제하고 있다.

연도별 의무공급량 비율(신에너지 및 재생에너지 개발·이용·보급·촉진법 시행령 별표3)
해당연도‘12년‘13년‘14년‘15년‘16년‘17년‘18년‘19년‘20년‘21년‘22년‘23년이후
비율(%)2.02.53.03.03.54.05.06.07.08.09.010.0

이에 따라 발전사업자는 태양광발전을 설치하여 운용하거나, 태양광발전사업자에게 돈을 주고 REC(Renewable Energy Certificate)라는 발전 인증서를 구입해야한다. 보통 REC를 구입하여 의무사용량을 채우기 때문에 이 정책은 태양광발전사업자에게 가는 보조금의 일환이라고 볼 수 있다.

둘째로 소규모 발전사업은 설치 시 보조금을 지급하고 있다. 이런 보조금 지급은 설치 부담을 줄여 투자회수기간을 줄여 보급을 확대하며, 이에 따라 시장규모 확대, 기술투자, 판매단가 하락, 보조금 축소 지급 등의 선순환을 기대하고 정책으로 필요한 사업의 초기 단계에 전폭적인 지원을 하는 것이다. 다른 석탄발전이나 원자력 발전, 수력 발전도 이미 1960~1990년대 발전을 거치면서 많은 정책적 지원을 받았었고 그랬기 때문에 지금은 굉장히 성숙하여 매우 효율적인 단계에 진입하였다. 다만, 태양광은 이제 시작이기 때문에 현 시점에서는 더 많은 보조금이 필요할 뿐이다. 그럼에도 서울시 보조금 정책만 보더라도 최근 몇년 새 판매단가가 줄어들어 보조금도 줄어들고 있는데도 판매단가-보조금=실 구입단가 인 실 구입단가도 줄어들고 있다.

셋째로 발전차액지원제도라고 하여 발전사업자들에게 예상되는 발전단가에서 차액 만큼을 보조금으로 지급하는 경우가 있었는데, 사실 현행 전기료를 받고 한전에 전기를 팔고 대금을 받아도 부족한 부분을 지원하는 것이다. 이 제도는 첫째로 소개한 REC에 비해 초기 단계에 매우 안정적으로 발전량을 확대시킬 수 있는 좋은 제도이다. 왜냐하면 발전사업자들에게 고정적인 수익을 일정기간동안 보장해주기 때문이다. 이에비해 REC는 REC 시장에서 수많은 소규모 발전사업자들이 발전사업자에게 REC를 파는 주식시장과 같은 방식으로 거래를 하기 때문에 REC 가격 예측이 불가능하며, 소수의 발전사업자에 비해 파워가 부족하기 마련이다. 한국에서는 현재 이를 폐지하고 2012년 RPS로 넘어갔다.

늘어난 태양광발전 설비 덕분에 2005년에는 낮 12시에 피크였지만 2010년대에는 3시 현재는 5시 이후에 전력 피크가 온다.

2021년 7월 한 달간 실제 피크시간 태양광발전 비중 약 11.1%이다.#

한국에너지공단에서 발표한 2021년 '신재생에너지보급실적' 통계에 따르면 2021년 태양광 에너지 발전량은 약 2400만 MWh로, 당해 1년 총 발전량인 576,809 GWh에 견주어 약 4.2%를 차지하였다. 태양광을 포함한 모든 신재생에너지 발전량의 점유율은 약 8.1%이었는데 거기서 절반 가량을 태양광 에너지가 차지하였다.

2021년 기준 서울, 인천, 대구, 부산 등의 광역시에서는 태양광 발전량이 매우 미미하여 약 200,000MWh 정도로 전국의 1%에도 미치지 못하는 곳이 많은 반면, 전라남도가 520만MWh, 전라북도가 423만MWh, 충청남도가 309만MWh를 생산하는 등 농촌 지역에서의 발전량이 두드러졌다.

전력수요가 폭증한 봄날 일시적으로 태양광발전의 비중이 40% 육박하기도 하였다.#

사상 최초 전력총수요 100GW 돌파한 2023년 8월 7·8일에 태양광 출력이 총수요 14.8% 차지했다.#

2023년 초 확정된 제10차 전력수급기본계획에서는 문재인 정부 시절 1년에 3.6GW씩 증가한 신재생에너지 발전용량 증가를 더욱 촉진하여 매년 5.3GW씩 늘려 2030년에는 태양광을 포함한 신재생에너지 발전량을 134.1TWh까지 늘린다는 계획이므로 해상풍력 등 타 신재생에너지 발전에 갑자기 환경적, 기술적 대격변이 일어나지만 않는다면 태양광 발전량도 크게 증가할 것으로 보인다.

3.2.1. 문재인 정부 태양광 사업

파일:상세 내용 아이콘.svg   자세한 내용은 문재인 정부 태양광 사업 문서
번 문단을
부분을
참고하십시오.

3.3. 유럽 현황

유럽에서는 태양광발전이 대체에너지로 활발하게 도입되었다.[3] 특히 독일은 2020년엔 전체 전력생산의 50%를 신재생에너지로, 2050년엔 전체 전력생산을 신재생에너지로 하겠다는 국가사업을 하고 있다. 그 중에서 태양광발전을 공격적으로 투자하고 있다. 그 결과 2014년 6월 설비 용량기준으로는 거의 절반에 다가가고 있다.

통계에 따르면 독일은 전기 수출량이 프랑스보다 많은 국가이며 외부 링크 독일은 전체 수출량이 2015년 기준 88.2TWh로서 프랑스의 72.9TWh보다 많아 유럽 1위라는 것. 덕분에 독일은 2012년부터 매년 약 12억 유로에 달하는 수익을 벌고 있다. ( 독일 전력 수출입 액수 통계.PDF의 12페이지 참고) 물론 이것은 태양광 발전이 시작되는 시간대에 외국으로 판매하는 것으로 태양광 발전이 중단되는 밤-새벽 시간대에는 반대로 외국에서 수입하는 경우도 있다. 시간별 전력 수출입 현황은 문서 하단의 표를 참조. 물론 대규모 배터리/열에너지 저장 시설(에너지 저장 체계)을 건설하여 낮시간에 지나치게 생산된 전력을 저장하였다가 밤시간에 공급하고 있기도 하다. 그러므로 독일의 상태를 대한민국에 섣불리 대입하는 건 문제가 많다.[4]

단점을 적자면 태양광은 가동률 기복이 아주 심하다. 즉, 태양광 설비용량 만큼 발전이 안 된다는 뜻이다. 최대치 기준 설비용량으로 일단 가동하면 꾸준한 출력을 내는 화석연료발전과는 비교할 수 없다. 독일은 아직은 천연가스, 석탄발전이 전체 발전량의 30% 이다. 독일이 수입한 전력 대부분은 덴마크, 노르웨이, 스웨덴에서 생산한 풍력·수력 에너지이며, 특히 독일은 프랑스에 전력 순수출 1.44TWh를 유지하고 있다.# [5] 독일은 이후 계속해서 투자를 늘려 2023년 기준 재생에너지 비율을 56%까지 끌어올렸다. # 포르투갈 61%(2024년 2월 88%), 영국 47.3%까지 늘리는 데 성공했다.

프랑스조차도 국회차원에서 원전비중을 2035년까지 50% 이하로 줄여나가겠다는 법안을 마련했으나 보였으나, 2022년 러시아-우크라이나전쟁 발발로 일단은 이 목표를 폐지했다. #

다른 나라들을 보자면 노르웨이를 비롯한 북유럽에서는 재생에너지 비율이 매우 높다. 국가에 넘쳐나는 삼림자원으로 목재 펠릿을 만들어 태우거나 수력발전을 통해 충당하기 때문. 이러한 국가별 지역별 특징을 토대로 유럽 연합이라는 거대한 틀 내에서 에너지 그리드를 활성화하여 재생에너지의 단점인 변동성을 충당하고 있다. 태양광 발전과 수력발전, 풍력발전 모두 예측도 어렵고 변동성도 크지만, 수많은 발전소들이 결합되어 움직이니 서로의 변동성을 상쇄하게 되는 것이다. EU라는 여러 자연기후를 가진 나라들이 서로 부족한 점을 채워주고있지만, 기존의 재생에너지 대책으로는 한계가 보여 재생에너지 100퍼센트가 아닌 2050년까지 탄소중립이라는 목표를 변경하여 나아가고 있는 추세이다.

3.4. 타국 현황

UAE 두바이에 단일 사이트로는 세계 최대 규모 태양광 발전소 있다. 면적 총 44km2, 축구장 6천 여 개 넓이와 맞먹는 이 발전소는 두바이에 공급되는 전기의 14% 담당하며 40도인 장소이다. 또 두바이 MBRM 솔라파크 등도 있다.

日정부, 2030년 시점 가장 싼 전원 '원자력→태양광' 변경했다.#

4. 산업 현황

전 세계적으로 미래 산업으로 각광 받고 있다. 기후변화협약을 통해 어떻게든 화석연료를 줄이기로 한 만큼 시장수요는 커질 수밖에 없으며 지금까지도 초기 산업 성장곡선대로 기하급수적으로 불어나고 있다.
파일:ch태양광.jpg

2020년부터 작성되기 시작한 신규 태양광 모듈 제조국별 비중 조사에 따르면, 2020년 한국산 64.2%, 중국산 35.8% 점유. 2021년 한국산 66.4%, 중국산 33.6% 점유. 2022년 한국산 68%, 중국산 32% 점유로 집계되었다. 다만 세계적으로도 태양광 패널 시장 자체를 중국이 가격경쟁력으로 거의 접수한 상태인 것은 사실이다.# 국내에서는 대기업 중에서는 한화그룹이 차세대 주력산업으로 밀면서 김승연 회장의 장남이 직접 한화솔라원을 맡아 계열사 한화솔라원(현재는 한화큐셀과 합병)에 몰빵하고 있다. 한화는 이미 독일 기업 큐셀을 합병했는데, 큐셀이 이미 전세계적인 기업이라 한화는 세계 상위권에 속하는 태양광 생산기업이다. 다만, 국내시장이 아직 발전단계라 주 무대는 해외이다. 이외에도 태양광 발전을 위해선 웨이퍼, 모듈, 셀, 시공, 실리콘 등 다양한 제품 생산라인이 있으며 국내 중소기업들이 각 분야에서 맹활약하고 있다. 중국에서 최근 자국 기업 보호를 위해 일부러 국내기업들에게 보조금 지급을 중단하고 있고, 또한 지나친 실리콘 생산으로 가격이 떨어져 업황이 좋지 않다. 하지만 이는 산업성장에 따른 주기적인 불황으로, 이를 견뎌낸다면 기업들이 앞으로 성장할 여력은 충분하다는 것이 주된 견해이다. 한화큐셀이 美 태양광 모듈 분야 1위 수성했다.기사 미국 바이든 대통령이 조지아에 있는 韓 태양광 모듈 공장 착공식에 참석한다.기사

테슬라는 태양광 발전 + 에너지 저장수단의 패키지 솔루션을 개발한다. 이미 다른 회사 제품보다 저렴한 가정용 기업용 배터리팩을 판매한다. 2016년에 태양광 패널 제조업체인 솔라시티를 인수해 2017년에 출시될 미려한 디자인의 가정용 태양광 패널을 공개했다. 이 패키지를 이용해 미국령 타우섬 전체에 태양광으로 전력을 공급하는 프로젝트도 진행 중이다.기사

대한민국에서 취득할 수 있는 연관 자격증은 신재생에너지발전설비기능사(태양광)신재생에너지발전설비기사(태양광)가 있다.

5. 발전유형

5.1. 자가소비용

가정집 또는 작은 공장에서는 전력 거래소에서 거래되지 않고 자체소비하는 비계량 발전이 대부분이다. 국가 장려 사업으로 지방자치단체를 통해 지원될 때가 많으며, 서울특별시, 광주광역시, 대구광역시, 경기도, 성남시, 및 서울시 각 자치구 등 여러 곳에서 진행한다. 설치가 부담될 때는 업체를 통해 대여할 수도 있다. 혹은 태양광 설비로 창출되는 이윤의 일부를 대여료로 지급하고 (그래도 월 1~2만 원 정도 이득본다.) 약정 연수가 지나면 설비를 양도받는 형식도 있다. 태양광 모듈에는 25년~30년 효율 보증이 있어 발전기 성능 열화를 걱정할 필요는 없다. 20년이 지나도 성능은 초기의 85%를 유지한다. 다만 인버터는 제조사에 따라 고장이 날 수 있는데, 가격이 40만 원 남짓의 인버터를 갈아야 한다.[6]

자가용은 먼저 발전 사업을 하거나 전기료를 0원으로 만들기 충분한 주택용(3kW)과 아파트·빌라 등 공동주택에서 베란다에 설치가 용이한 베란다용(0.2~1kW)이 있다. 옥상 시스템은 주거용 5~20kW, 상업용 1~100mW의 용량을 가진다.

350만원 가량[7]주택용(3kW) 태양광 발전설비는 전기요금이 7만원 이상 나오는 주택·빌딩에서 고려해 볼 만하다. 예를 들어 기존에 한 달 10만 원 정도의 전기료를 납부하던 주택에 3kW의 태양광 설비를 설치하면 전기료가 3만 원 대로 줄어들 수 있다. 2016년 누진제 조정 이후에도 이 정도 절감율이다. 보조금 없이 5~6년 남짓으로 본전을 뽑을 수 있다. 만약, 원래 가정용 전기 소비량이 월 260kWh 근처였다면, 월 전기료가 0원이 나온다. 이는 3kW 급에서 한 달 평균 260kW 정도 생산할 수 있기 때문. 이 설비가 주택용인 이유는 3kW급을 설치하려면 최소 30제곱미터 이상의 면적이 필요하기 때문이다. 옥상 여유에 따라 3kW 또는 그 이상을 설치한다면, 전기 사용량 이상을 발전하는 셈이므로 한국전력공사에 전기를 팔아서 소소한 수익을 얻을 수 있다. 자세한 것은 서울에 거주한다면 서울시 햇빛지도 홈페이지에서 자기 집의 예상 가능 발전량을 계산해볼 수 있다.

아파트빌라 등 공동주택은 베란다(발코니) 난간에 설치 가능한 미니 태양광 발전 설비[8]를 사용 가능하다. 발전 용량은 주로 200~500W이며, 250W 기준으로 냉장고 1대 분량의 전력을 생산할 수 있다. 공간이 충분히 확보된다면 합계 용량 1kW이상의 태양 전지와 배터리까지도 설치 가능하다. 주택용과 마찬가지로 이름이 베란다형인 이유는 200~500W급은 베란다에 설치하기 적합한 규모이기 때문이다. 베란다형의 장점은 소액으로도 설치가 가능하고, 보조금을 받은 지역을 5년간 벗어나지 않는 조건 하에서 탈부착이 가능하다는 점이다. 즉, 서울특별시에 거주하는 전세나 월세 세입자도, 5년간 서울에서 벗어나지만 않으면 서울 외에 다른지역으로 이사를 가도 들고가서 설치해서 계속 사용이 가능하다. 미니 태양광 발전기는 배터리에 축전하지 않고 인버터를 통해 콘센트로 전력을 보내는 방식[9]의 발전기로 발전 전력이 한전 전력보다 먼저 소비되도록 되어 있어 절전 효과를 가진다. 발전 전력이 소비전력보다 클 시에는 계량기가 거꾸로 돌 수 있으나, 아날로그 계량기에만 해당한다. 자가발전기와 호환되지 않는 대다수의 디지털 계량기[10]는 거꾸로 도는 대신 외부로 송전되는 만큼 전기를 쓴 것으로 인식하는 경우가 대부분이며 일부 고성능 계량기들은 전류 방향이 반대인것을 측정해 오류 표시를 나타내게 된다. 미니 태양광 발전에 사용되는 태양전지는 크게 세 종류로 작은 50W 패널 4~12개를 연결하는 방식[11]과 100W 패널 3~4개를 연결하는 방식, 250~300W 패널 1~4개를 연결하는 방식이 있다. 이외에도 배터리에 연결하거나 수십 와트 수준의 소규모 발전을 위해 지자체의 지원을 받지 않고 DIY로 자가설치하는 경우도 간혹 있다. 에어컨 실외기 위에 가림막 대신 설치하여 냉방 효율을 늘리고 동시에 발전도 하는 일석이조의 경우 또한 있다.

단, 베란다가 남향이 아니거나(특히 북향) 주변에 나무, 건물 등 햇빛을 가리는 장애물이 있으면 발전 효율이 저하되며, 2000년대 중후반 이후 지어진 신축 아파트 다수는 정남향 위주의 성냥갑 형태가 아닌 기둥 형태의 아파트들을 좁은 거리로 배치하는 경우가 흔해 단지 내 최남단 혹은 고층 세대를 제외하면 햇빛이 가려져 발전 효율이 크게 저하될 수 있다. 관련 업체에서도 이런 조건의 베란다·난간에는 설치를 권장하지 않는다. 일부 아파트에서는 안전·미관등의 이유로 에어컨 실외기를 포함한 베란다 밖 돌출물의 설치를 금하는 경우도 있어[12] 설치 시 관리사무소 등에 허락을 받아야 할 수 있으므로 유의할 것. 특히 통창으로 되어 아예 베란다 난간 자체가 없는 아파트의 경우 설치가 어려울 수 있다. 다만 이러한 경우에도 설치가 아예 불가능한 것은 아니고 플라스틱 재질의 가벼운 태양광 패널을 창문에 흡착시키면 된다. 그러나 이러한 패널을 다루는 업체가 없으므로 자가설치를 해야 한다. 미니 태양광을 신청했다 일조권이 침해되는 곳으로 이사가는 경우 중고로 판매하는 등 미니 태양광 설비를 처분해야 하는 문제가 발생한다.

서울특별시에선 시 보조금과 구 보조금을 모두 받으면 업체에 따라 300W급을 20만원에 설치할 수 있었다. 이렇게 되면 투자금 회수는 1년 4개월만에 가능할 정도이다. 서울특별시 햇빛지도 사이트에 가서 맘에 드는 업체에 전화하면 신청이 가능하였다. 모든 서류는 업체가 대신 작성해 서울시와 자치구에 보조금을 신청하므로, 구매자는 업체에 전화해 보조금이 적용된 할인 가격에 구입하기만 하면 된다. 인기가 높아 보통 9~10월이면 보조금 지급이 완료된다.

서울특별시에서 원전 하나 줄이기 프로젝트의 일환으로 적극 추진했었으며, 다른 지역에는 여전히 추진중이다. 근래 신축되는 아파트나 원전 하나 줄이기의 에너지자립 마을을 신청해서 건물 꼭대기에 발전 설비를 설치[13]하여 엘리베이터, 복도·주차장 조명 등 공동 사용 전기를 충당하기도 한다. 이런 경우 아파트 거주 세대 전체의 관리비가 줄어드는 효과를 볼 수 있다.

2022년 1월 1일에는 관련 업체들의 불법 하도급 등 문제점들로 인해 서울시의 태양광 사업과 원전 하나 줄이기 프로젝트가 종료되었으며, 베란다형 태양광 패널 보조금 지원이 끊기게 되었다. 햇빛지도 사이트의 접속 또한 불안정해졌다. 다만 다른 태양광 사업들은 예산이 축소된 채로 계속 진행될 예정이다. 또한 사업 중단 이후에도 개인적인 자가 설치는 가능하며, 다른 지방자치단체의 경우 베란다형 태양광을 비롯한 태양광 사업을 계속 진행중이다.

주택용과 베란다용 모두 전력을 배터리에 저장하는 대신 계통 연계형 인버터를 사용하여 한전 전기와 동기화된 전력을 출력하는 형태를 가진다. 이러한 시스템은 정전시에는 안전을 위해 인버터가 작동을 중단하기 때문에[14] 태양광 발전 전기를 사용할 수 없다. 그러나 일본 등 재해가 잦은 국가에서는 정전이 발생하면 메인 차단기가 내려간 뒤 태양광 인버터가 단독 운전을 하도록 설계하거나 여기에 배터리까지 갖추어 정전시에도 태양광 발전 전력을 사용 가능하도록 하는 경우도 있다.

대한민국도 마찬가지로, 특정 정부의 에너지정책 이후 가스, 전력요금 급등 및 송배전망에 다발되고있는 전력 장애로 인해 하이브리드형 태양광 발전설비를 도입하는 경우가 많아지고 있다. ~30kW 급에선 주로 스위스 Studer 사, 대만 Voltronic 사 제품, ~3kW 급에선 대만 FSP, 국내의 중소기업들에서 제작되는 제품들이 있다. 이러한 하이브리드 인버터들은 여기서 다시 ATS 형과 온라인형이 나뉘어지는데, 대용량 장비들은 온라인타입을 사용하므로 대용량 무정전 전원장치와 같이 30~72h 이상 무중단 운영이 가능하면서도 동시에 외부로의 전력 유출을 막을 수 있으면서 동시에 발전기 전력까지 혼합해 사용할 수 있다. 또한 이런 하이브리드 인버터를 사용하면 AC레일을 복수 운영할 수 있는데, 세컨더리 AC레일에 심야전기 전력을 물려 배터리뱅크에 전원을 충전해 주간에 사용하는 등의 구동도 가능하다. 특히, 인버터 회사들간의 공용으로 사용된 Battery CAN 통신규격 덕에 48V 배터리팩을 48여개[15]씩 쌓는것도 민간 장비로 가능하다. 단, 대한민국은 축열/축냉기기 및 전기사륜자동차에 대해서만 심야전력을 공급하므로 다른 국가와 같이 야간 시간대의 심야전력을 활용한 ESS동작까지는 사용이 어렵다.[16]

5.2. 발전소용

발전소용은 만들어진 전기를 오롯이 주전력생산자(한전)와 신재생에너지의무공급자(대규모 발전소)에 팔아 수익을 창출하는 계량 발전 형태로, 재테크의 일종이다. 주택용도 주택에 조금 더 설치하면 소소한 수익이 돌아오긴 하지만, 발전소용은 아예 본격적인 투자라고 볼 수 있다. 100KW급 설비는 2016년 말 기준 초기 자본이 1억 3000만원, 지대가 3천만 원 정도다.

잘못 투자하면 투자금액을 야금야금 까먹고 심하면 도산할 수도 있다. 까다로운 관공서 인허가, 정부 정책, 기상 상황, 기타 규제로 인해 예상치 못한 문제가 생기면서 변동성이 커서 투자금을 날려 먹을 수 있다. 도산한 후기.

주된 어려움은 다음과 같다.
  • 태양광의 특성상 겨울이나 궂은 날씨에는 발전량이 충분하지 않다. 반대로 돈을 빌려서 투자할 때 이자 지급에는 날씨의 영향이 없이 꼬박꼬박 내야 한다. 따라서 돈을 빌려 투자를 시도하기에는 태양광은 위험하며, 겨울철에 여유자금이 모자라면 담보로 다 빼앗길 수도 있다.
  • 주변 민가, 주변 축산업자들에게 보상금을 주지 않으면 전자파를 배출한다며 민원이 들어온다. CCTV가 없으면 몰래 흙을 뿌리는 등 해코지를 하기도 한다.
  • 지자체의 인허가를 얻는 데 발목잡힐 수 있다. #심지어 관련공무원과 업체가 뒷거래를 하기도 한다.#

전력 판매 대금은 SMP + REC 가격으로 이루어 진다. SMP(System Maginal Price, 계통한계가격)는 그냥 일반 전기 도매가격이라 보면 되고, REC(Renewable Energy Certificates, 인증서) 가격은 정부에서 의무부과한 재생에너지를 채워주는 대가라 보면 된다. 발전회사들은 강제로 재생에너지를 일정비율 발전해야 하는데(RPS, Renewable Portfolio Standard), 규모도 얼마 안 되는 재생발전소를 여기 저기 짓자니 번거롭고 관리 또한 귀찮다. 그래서 소규모 재생발전업자에게서 재생에너지 발전량을 사오는 것이다. 그 대가로 주는 것이 REC 가격.

태양광으로 재테크시, 발전으로 이익을 보는 것 외에 부수입이 있을 수 있다. 태양광발전소를 만들면 해당 땅의 지목이 잡종지로 바뀌는데 논, 밭, 임야에 비해 개발허가가 좀더 쉽게 나서 땅 값이 오른다고 한다. 따라서 지가 상승에 따른 이익도 기대해 볼 수 있다. 다만 이것은 주의할것이, 현재 내륙지역에 지어지는 태양광 발전소의 대부분은 민원때문에 깊은 산골로 들어가는 것이 현실이다. 이런곳은 잡종지가 되든 말든 거래의 성사 자체가 어려운 곳이 많다. 대신 이 잡종지 전환을 통한 지가 상승을 노리고 제주도에서의 분양을 시행하는 곳이 있는데, 이에 대한 투자는 투자자 본인이 판단해야할 것이다. 거듭 강조하지만 투자는 신중해야 한다. 태양광 발전은 근미래까지는 자체적인 경쟁력이 없다. 오로지 정부 정책과 주변 상황에 의존하여 수익을 창출하고 있는 것이다. 이말인즉 장려 정책이 줄어들면 적자가 된다는 의미다.

5.3. 해상 태양광

바다에 설치하는 수상 태양광으로, 호수나 저수지에 설치하는 기존 수상 태양광보다 부지 확보가 쉽다는 장점이 있다. 파도 및 해풍 대비, 염분에 의한 장비 부식 등 걸림돌로 인해 실용화가 늦었다. 국내의 경우 2022년 기준으로 시화호, 인천항 등에 실증용 해상 태양광 발전소를 건설하였으며, 태양광 발전 시설을 건설할 토지가 절대적으로 부족한 홍콩에서는 이미 실증 연구 시설을 건설하였고, 마찬가지로 토지가 부족한 싱가포르에서는 세계 최초로 해상 태양광 발전소를 완공하였다. #

5.4. 수상 태양광

기존 태양광 발전은 사막이나 황무지 등 유휴지를 주로 활용하는 형태다. 그러나 유휴지가 적은 지역에서는 다른 방식의 태양광 발전을 찾아야 했다. 땅 대신 파도가 없고 수면이 대체로 안정적인 저수지를 활용해 보자는 발상이 수상 태양광 발전이다.[17] 중국에서는 2017년 안후이성 화이난(淮南)에서 40㎿의 시설을 가동했다.

대한민국은 집약된 인구 구성상 저수지가 많으며 5퍼센트만 활용해도 4,170MW(메가와트) 규모로 약 560만명이 사용할 전력 공급이 가능하다고 하며, 활발하게 연구개발되고 있다. 2008년부터 개발을 시작하여 2009년 한국수자원공사의 주암댐 2.4kW급 실증 플랜트가 설치됐으며, 합천댐에 40MW 규모, 새만금에 300MW 규모의 수상 태양광 발전단지가 설치될 예정이다.

수상 태양광 발전의 장점은 이렇다.
  • 안정적인 일조량 - 유휴 평지가 적고 저수지가 많은 대한민국에 적합하다. 음영 간섭도 적다.
  • 높은 효율 - 수면은 온도가 낮아서 셀의 최대 효율 온도로 유지하기 쉽다. 수면에 반사되는 잔광도 있어 지상과 비교하여 10% 이상의 높은 효율을 보인다고 한다. 열에 의한 셀의 화학적 특성 변화도 적어져 수명도 늘어난다.
  • 녹조, 적조 방지 - 녹조와 적조는 주로 햇빛으로 발생한다. 투과 태양광을 줄여 녹조와 적조를 줄일 수 있다.

단점은 이렇다.
  • 환경 악영향 - 수중에 투과되는 태양광을 줄이면 수중 생태계 교란이 우려된다. 현재는 어류 휴식처를 제공하는 등 영향이 적다는 연구 보고가 보이지만, 대규모로 설치되었을 때는 어떨지 미지수. 이는 발전단지의 디자인과 설계에 따라 환경 영향이 크게 유동적일 수 있다는 뜻이기도 하다.
  • 상대적으로 높은 비용 - 지상보다는 많은 시설이 필요하며 유지보수도 상대적으로 까다롭다. 그러나 유휴 평지가 적은 대한민국에서는 선택의 여지가 적다. 상대적으로 높은 효율로 유지보수비를 보상하는 발상이다.
  • 패널 오염 문제 - 간척 호수에 설치할 경우 철새나 바닷새들의 배설물로 패널이 오염되는 문제가 있다. #
2022년 말과 2023년 1월에 거대 수상 태양광 발전소가 강풍으로 인해 모조리 박살나버리는 사건이 연속으로 벌어지면서 안정성에 대한 우려의 목소리가 나오고 있다.반응

5.5. 연구중인 유형

  • 우주 태양광 발전

    태양광 발전소를 인공위성 궤도에 설치하는 방식으로, 미국의 SF소설가인 아이작 아시모프가 1941년 발표한 단편소설 '리즌(Reason)'에서 우주 공간에서 얻은 태양광 에너지를 지구로 전송하는 우주 태양광 개념을 처음 제시했다. 우주에선 기상 현상이나 밤낮의 변화 등으로 인한 효율성 저하가 거의 없으며 일식이 일어나는 경우를 제외하면 24시간 발전할 수 있기 때문에 기저 전력으로 사용할 수 있다는 장점을 가진다. 하지만 막대한 건설 비용과 우주 쓰레기 문제, 무엇보다 전력을 지표면에 전송하는 문제가 해결되지 않아 구상 단계다. 2020년 현재 상용화 시점은 2050년으로 예측되고 있다. 이 우주 태양광 패널들을 태양 저궤도에 가깝게, 많이 띄워놓은것이 바로 다이슨 스피어이다.

    한국전기연구원 정순신 박사의 의견 형태를 빌려 2004년 과학동아에 기재된 내용상으로는, 전기 에너지를 마이크로 전자기파로 변환하여 지상으로 송전한다는 구상이 있긴 하였다. 지상의 대기상태에 큰 상관없이 태양에너지를 그대로 송전할 수 있다는 장점이 있다고 한다. # 하지만 이는 어디까지나 구상으로, 상당히 과장된 부분이 있다. 태양에너지를 전자기파 형태로 보낸다고 해도 전자기파는 거리의 제곱에 반비례하여 줄어든다. 따라서 우주에서 지구로 보낸다면 엄청난 손실이 발생할 것이고, 마이크로파가 전자기기에 주는 유도장해 또한 문제가 될 것이다. 다른 조치를 취하지 않는다면 델린저 현상처럼 대부분의 무선 통신이 마비될 것이다. 전자파 문제도 언론을 통해 논란이 될 것이다. 레이저로 전력을 전송하는 방법 또한 구상되었으나 구름이나 안개 등 기상 현상이나 미세먼지와 같은 공해 물질에 의해 광선의 에너지가 손실되는 문제점이 있다.

    미국 캘리포니아 공과대학교(칼텍)는 응용물리학 연구자들을 주축으로 2013년 '우주 기반 태양광 발전 프로젝트(SSPP)'에 착수했다. 이 프로젝트는 익명의 투자자로부터 1억 달러(약 1150억원)를 투자받아 8년여간 연구를 진행했다. 이후 2021년에 칼텍 SSPP 연구진은 이 익명의 투자자가 미국 억만장자인 도널드 브렌 부부라는 사실과 함께 2023년 실제 우주 공간에서 그간 개발한 기술을 적용한 첫 테스트 계획을 공개했다. SSPP 연구진은 우주에서 얻은 태양광 에너지를 레이저나 빔 방식의 '마이크로파'로 변환해 지구로 전송할 수 있는 하드웨어 시제품(프로토타입) 개발을 최근 완료했다. 앞서 2017년 말에는 단위면적(1㎡)당 1kg 미만의 태양전지를 넣을 수 있는 초경량 모듈을 만들고 무선으로 전력을 전송할 수 있는 빔을 통합한 회로를 설계하는 데 성공했다.SSPP 연구진은 2023년 우주 공간에 프로토타입을 발사해 무선 전력 전송 첫 테스트에 나선다. 해리 앳워터 칼텍 응용물리학·재료과학과 교수는 "세계에서 가장 풍부한 에너지 자원인 태양광을 우주에서 얻는 것은 가장 혁신적인 에너지 확보 방안이 될 것"이라고 기대했다. 또한 미 해군연구소는 PRAM 장치로 10와트의 전기에너지를 전송하는 데 성공했다고 밝혔다. 이는 태블릿 1대를 충분히 작동할 수 있는 전력이다. 2024년에는 대규모 우주 태양광 에너지를 마이크로파를 이용해 지구로 전송하는 실험에 착수한다는 계획도 세웠다.#

    전자기파가 거리의 제곱에 반비례하여 줄어드는 문제는 송신 안테나를 위상배열 형태로 구성하여 지향성으로 보내는 방식으로 완화 가능하며, 전자파 및 전자장비 간섭 문제는 해상 등 인적이 드문 장소에 수신시설을 건설하고 일대에 항공기가 접근할 수 없도록 비행금지구역으로 지정하는 방식으로 해결 가능하다. 에너지 수신은 렉테나(Rectenna, 정류 안테나)를 수 ㎢ 면적에 걸쳐 설치한 배열을 사용하며, 그 뒤에는 안테나에서 출력된 직류 전력을 교류로 변환하여 송전망으로 보낸다.

    창작물에서도 등장하는데, 미래소년 코난에서는 인류가 이 방식의 발전 설비를 완성하였고, 우주 발전소에서 마이크로파로 전력을 받는 곳이 삼각탑으로 나온다. 또한 심시티 2000심시티 3000에서도 거대한 접시 안테나 형태[18]의 마이크로웨이브 발전소가 등장한다. 기동전사 건담 00에서는 궤도 엘리베이터 이론을 결합하여 우주 태양광 발전의 상용화를 성공적으로 이룩한 사회가 배경으로 나온다.

6. 전력 공급 방식 유형

계통연계형과 독립형으로 나뉜다. 계통연계형은 주전력공급처(대한민국에서는 한국전력공사)와 설비와 가정이 연계되어 발전량 만큼 전기사용량을 감면 받고 추가 발전량을 이월할 수 있다. 만약 가정용 전기소비량이 누진제 구간 근처에 있다면, 전기사용량을 떨어뜨릴 수 있으니 누진제 산정에서 유리하다. 독립형은 말 그대로 주전력공급처와 독립되어 전기를 축전지에 저장하고 이를 사용하는 방식이다. 주로 전신주가 없는 산간지방이나 작은 섬, 푸드트럭 등에 이용하며, 계산기, 가로등, 보조배터리 등에 들어간 패널도 이에 해당한다. 발전 전력을 배터리에 채운 뒤 남는 전력을 계통으로 보내는 혼합형 시스템도 있으나 흔치는 않은 편이다.

특이한 방식으로, 준독립형이 존재한다. 준독립형의 경우에는 보통 3kw 태양광과, 컨트롤러와, 일반 인버터를 사용하며, 빛이 들어오는 대로 사용하므로 낮에는 에너지를 독립적으로 쓸 수 있고, 밤에는 전기를 공급받지 못한다는 특징이 있다.[19] 실제로 사용할 수 있는 용량은 설치 용량의 3분의 1 정도다. 초기 설치비는 지원된다는 가정하에 총 270만원 정도로, 200만원인 계통연계형보다 비싸고, 1400만원인 독립형보단 싸며, 수명이 상대적으로 길다는 이점을 가지고 있다. 가정용보단 태양광 스마트폰 충전기에서 주로 볼 수 있다.

쉽게 설명하자면, 자기 집에 계통연계형 태양광 발전기가 설치되어 있다면 정전이 됐을 때 전기가 들어오지 않는다.[20] 계통연계형은 발전한 전기를 자기 집이 아니라 한국전력공사 전력망으로 보내기 때문이다. 반면 독립형과 혼합형은 발전한 전기가 자기 집의 축전기와 배터리로 보내지므로 정전이 되어도 전기가 들어온다.

7. 장단점 비교

주의: 최근 정부의 정책과 관련해서 이 문단에 대해 상반되는 주장들이 서술되고 있다. 어떤 입장을 지지하건 비판적으로 읽는 것이 좋다. 어떤 발전방식도 만능은 아니며 언제나 이득과 손해의 총량을 따져봐야 한다. 현재 진행되는 신재생에너지 확대와 원전비중 축소, 석탄발전의 미세먼지와 전기료 상승압박 등과 관련해 태양광 발전에 대해 무조건 적인 찬성과 무조건 적인 비판 모두 이익집단의 이해가 반영되어 있을 가능성이 높기 때문이다.

7.1. 장점

일단 화력 발전보다는 여러모로 친환경적이다. 태양광도 제작 또는 처분 과정 때문에 환경파괴 논란에서 완전히 자유롭지는 않으나, 발전하는 도중에는 대기오염 등으로 인한 전반적인 환경파괴가 거의 없다.

정비요소가 적어 유지비가 저렴하다. 대형 발전기에 비하면 부품별 모듈화가 되어있어 고장나도 쉽게 고칠 수 있고 무엇보다 움직이는 기계 장치가 아예 없으므로 마모현상으로 인한 유지보수가 없다. 터빈을 포함한 모터가 얼마나 복잡하고 비싼 기계부속품인지 생각하면 패널 및 인버터 교체만 하는 태양광 발전은 정비요소가 적은 것임을 알 수 있다.

또한 대형 사고 위험이 0에 수렴한다. 물론 전기 장치니만큼 전기 사고는 어쩔 수 없지만, 화력이나 원자력 같이 폭발 위험이 있거나, 수력발전처럼 댐이 터진다거나, 풍력처럼 십수미터 짜리 풍차, 터빈이 수십 미터 상공에서 떨어지는 불상사가 없다. EU공동연구소에 따르면 1조Kwh당 사망자수는 석탄 14명 천연가스 8명 해상풍력 1명 육상풍력 0.2명 2세대 원자력 0.5명 태양광 0.03명으로 화력발전이나 원자력이 아닌 다른 신재생에너지 발전에 비해서도 매우 안전한 편이고 0.0008명인 3세대 원전조차 전쟁으로 인한 위험이 있다는것을 생각해보면 태양광이 가장 안전한 방식이라고 해도 무관하다.

기껏해야 유지보수 중 감전 사고나 과부하로 인한 화재 정도 인데 재난에 가까운 상황과는 거리가 멀다. 일반인도 할 수 있는 결정적인 이유가 바로 안전함도 한몫한다고 볼 수 있다. 다만 사고 위험이 없다고 아예 안전 문제를 간과하고 발전 시설을 만든다면 산사태가 발생하거나, 높은 곳에 설치하는 경우 작업자 또는 장비가 추락하는 사고가 발생할 수 있으므로 안전을 아예 등한시하면 안 되긴 하다.

다른 신재생 발전에 비해서 부지 제약이 적다. 신재생에너지 발전 중에서는 일반인들이 가장 쉽게 접근할 수 있다. 전력공급이 어려운 낙도에 비교적 빠르게 확산되었고 일반 가정에서도 보조금을 지원받아서 확산되는 추세. 모듈화가 잘 되어있어 규모도 비교적 쉽게 축소/확장할 수 있고, 여러 상황이나 장소에서 사용이 가능하다는 것은 분명히 장점이다. 인프라 확충이 어려운 시골에 쉽게 설치가 가능하여 시골 주민들이 전기를 쉽게 얻을 수 있고, 남은 전기를 한전에 팔아 수익을 내기도 한다.

패널뿐만 아니라, DC-AC 인버터, 기타 설비, 설치까지 동시에 비용이 낮아졌다. 효율성 역시 올라가고 있다. 미 에너지부 홈페이지 참조. 2010년도 이후 높아진 태양전지에 대한 관심도 근본적으로 낮아진 발전비용의 예측에서 시작되었다. 일례로 2014년 도이치뱅크는 이미 19개국에서 태양광발전이 기존 발전비용과 같거나 싸지는 상황에 이르렀다고 보고했다.

정오를 기준으로 발전량이 최대가 되는 단점은 지역에 따라서는 극복할 수 있다. 가령 대한민국은 과거 12시에 가까울수록 전력 수요가 증가하고, 멀어질수록 전력 수요가 감소하는 특징이 있다. 특히 수요 전력량이 연중 최대인 여름에는 광발전의 최대 생산 시점과 최대 전력 수요 시점이 거의 일치한다. 2010년대에는 피크시간이 15시였지만 최근에는 17~20시에 몰리는 경우가 많다. 이러한 특성은 정오 시간대에 작업 시간과 냉방 수요가 몰리는 타국에서도 보여지는 일반 현상이며, 때문에 태양광은 주로 첨두 부하를 담당하는 방식으로 형성된다. 물론 ESS나 다양한 보조 수단을 통한 정교한 전력 수급 계획이 없으면 한계가 있다.

7.1.1. 범용성

여러 논란에도 불구하고 태양광 발전이 가지는 압도적인 장점은 항성 주변이라면 어디에서나 사용 가능한 범용성이다. 우주에서는 구하기 힘든 화석 연료와 산소가 필요한 화력 발전, 행성 또는 소행성을 채굴해야 얻을 수 있는 핵 연료를 사용하는 원자력 발전과 달리 항성의 빛을 받는 곳이라면 어디에서나 사용 가능하다. 달이나 화성을 개척할 때 지구에서부터 화석 연료나 핵 연료를 운송해서 사용하는 것은 매우 비효율적이며 강도 대기도 없는 곳에서는 수력, 풍력[21] 발전도 사용할 수 없으니 결국 정답은 태양광 발전 뿐이다. 또한 태양광 발전으로 얻은 에너지를 이용해 달과 화성에 흔한 규소를 녹여 태양광 패널을 추가로 제작하는 무인 공장을 건설하면 빠르게 인프라를 구축할 수 있을 것이다.

다만 화성에서 사용할 경우 문제점이 있는데, 태양에서부터의 거리가 멀어 발전 효율이 지구에서보다 40%밖에 되지 않는다는 것과 먼지폭풍이 빛을 가리기도 하고 패널 위에 먼지가 쌓여서 정기적으로 청소가 필요하다는 것. 때문에 화성 탐사선에 태양광 패널이 아닌 원자력 전지를 탑재하기도 한다. 하지만 일회성 탐사가 아닌 정착과 개척을 목적으로 한다면 결국 태양광 패널이 답이다. 또한 화성보다 더 먼 외행성에서 사용하기에는 태양광의 효율이 너무 낮아진다는 문제가 있다. 예를 들어 목성 탐사선 주노의 태양광 발전량은 지구에 있었을 때와 비교하면 4%에 불과하다.

7.1.2. 편리성

태양광은 설치 시간이 짧고, 소규모일 경우 개인이 직접 시공하는 것도 가능하다. 요즘에는 유튜브 등에서 태양광을 직접 시공하거나, 시공하는 방법을 알려주는 영상이 많이 퍼져있다. 풍력발전, 수력발전과 같은 발전은 모두 전문업체에 맡겨서 설치하므로 편리하지 못하다.

태양광은 관리도 편리하다. 설치만 하면 끝나며, 유지보수의 경우는 고장이 아닌 이상 필요없으며, 먼지가 쌓였을 땐 물청소만 하면 끝난다. 다른 발전들은 전문업체에서 직접 유지보수를 해야하므로, 가정용으로 쓰기에는 부적합하다.

또한 태양광은 신재생에너지 가운데 유일하게 휴대가 가능할 정도로 진보돼있다.[22] 다만, 주머니에 넣을 정도의 태양광 패널은 약 1W만 생산하므로 아직까지 수치를 따질 수 없을 만큼 미미한 수준이다. 따라서 발전 가능한 수준이 되기 위해서는 효율 개선이 필요하다.

지금 효율로도 가방에 넣을 수 있는 100W 이상의 태양광 모듈도 판매되고 있어서, 등산, 여행, 캠핑, 레저용으로 인기가 높다.

다만, 태양광의 특성상 최대 실사용 출력은 명시된 최대출력의 50%에 불과하므로, 15W 고속충전이 가능하려면 적어도 30W 이상의 태양광 패널을 구매해야 한다.

7.1.3. 높은 단위 면적당 에너지 생산량

재생 에너지로선 최상위이다. 10W /m2를 생산 가능한 태양광 발전소는 단위 면적당 에너지생산 효율이 풍력발전의 4배, 바이오매스의 20배이다.

현재 지구에 와닿는 태양 에너지는 미터당 100~250W인데, 현재 태양광발전이 10~20%의 효율이고, 향후에는 효율이 더욱 오를 수 있을 것을 감안하면 다른 어떤 재생에너지와 비교해도 넘사벽이다.

단위 면적당 에너지 생산량은 특히 한국에서는 제일 중요한 요소다.

파일:energyproductivity.png

위에 보다시피 대한민국은
1. 세계최고수준 인구밀도
2. 선진국으로서 높은 1인당 에너지 소비량
...을 둘 다 충족시킨다. 10만 km2 남짓한 적은 땅에 5000만명의 인구가 선진국수준의 삶의 질을 누리려면? 홍콩 싱가포르같은 도시국가들 제외하면 한국이 필요한 면적당 에너지 생산량은 세계 최고이며, 풍력발전소의 평방미터당 2.5W로도 충족시키지 못한다.

에너지 소비량은 높지만 인구밀도가 낮은 미국이나 인구밀도는 높지만 에너지 소비량은 낮은 방글레데시같은 나라들은 다양한 종류의 신재생 에너지로 발전을 할 수 있다. 대한민국의 에너지 수요를 충족시키려면 현재로선 재생 에너지중에서는 해결책이 태양광이다. 단, 최근 녹색분류체계(Taxonomy)에 폐기물 처리 조건이 엄격한 원전과 천연가스가 포함 되었다.

7.1.4. 의외로 긴 수명

태양광 패널의 수명이 20~25년 정도로 알려져 있는데, 이는 효율이 80%가 될 때까지의 기간을 말한다. 한마디로 말하자면 태양광의 "유통기한"과 같다. 식품도 유통기한이 지났다고 해서 바로 버리지 않고, 사용할 수 있는 최대한의 기간이 따로 있는데, 이 기간을 "사용기한"이라고 한다.

태양광 패널이 연간 0.3~0.8%씩 수명이 감소하므로 수명이 80%가 되려면 최소 25년에서 최대 70년이 걸린다. 수명이 50%가 되려면 산술적으로 최소 60년에서 최대 165년이 걸린다.

하지만 인버터는 7~15년[23] , 배터리는 5~15년[24]으로 태양광 패널에 비하면 짧은 수명을 가진다. 구조물도 현 시점에서는 60년을 버티기 힘들다.

사업을 하는 경우는 보통 20~25년을 쓰고 폐기하는 경우가 많지만[25] 주기적으로 유지보수하는 한 수십년간 사용이 가능하다.

수명이 0%가 될 때까지 쓰기에는 비효율적이기도 하고 지지대와 같은 건축물이 그때까지 못 버틸 가능성이 높기 때문에 50%까지만 쓰고 폐기하는 것이 일반적이다. 이 마저도 60년이 걸리는데, 60년이면 모든 발전방식 중에서 가장 긴 표준 수명을 가지게 되는 셈이다.

7.1.5. 낮아지는 발전단가

파일:costs of energy.png
비록 모든 발전 방식 가운데 가장 싼 것이라는 소리는 아니나, 그래도 비싸진 않은 가격에 속한다. 하지만, 최소 가격[26]으로 대결해보면, 태양광이 압도적으로 저렴하다. 당장 계산기에 들어가는 태양광 패널만 보더라도 말 다했다. 나머지 발전들은 저렇게 작게 만들 수 없다. 특히, 합리적인 가격은 과거에는 불가능했던 "그리드 패리티"를 달성할 수 있게 도와주었다. 요즘에는 생산 단가를 더 낮출 수 있는 신기술도 개발하고 있다. 심지어 최초 상용 개발된 77년 이후 발전단가는 400배#나 저렴해졌으며, 일부 조사에 의하면 다른 터빈을 이용하는 발전에 비해 발전단가가 저렴하다는 결과도 있다.[27] 하지만 아직도 태양광의 효율증가나 발전단가의 저감, 인버터의 가격하락은 2024년 현재로 진행중에 있다.#

전력난이 매우 심각한 북한에서는 돈 좀 있는 가정이라면 웬만해선 태양광 패널을 갖추고 있다고 한다. 돈 많이 버는 사람은 당연히 큰 패널을 가지기 마련이다. "최소한의 가격" 만큼은 태양광이 가장 저렴했다는 뜻이다.[28]

가정용으로 쓰는 3kw급은 정부 보조금 없이는 800만원대로 매우 비싸서 설치에 곤란함을 겪지만[29], 스마트폰 충전 목적으로 사용하는 40w 태양광 패널은 6만원 정도면 살 수 있다. 아직까진 싼 가격이라기엔 그렇지만, 돈 좀 투자하면 충분히 살 수 있는 수준이다.

7.2. 단점

7.2.1. 대한민국에서의 비용효율 타당성

2022년 6월 15일 SBS뉴스

사실 한반도의 지형과 기후 자체가 대체에너지와는 매우 상극이다. 하우기후(Cwa, Dwa)에 자잘한 산지가 많아서 태양광이든, 수력이든, 풍력이든 그 어떤 '친환경'에너지의 효율도 최대로 뽑아먹을 수 없다.

2014년 당시 보조금 없이 신재생에너지 발전과 기존 화력발전의 비용이 같아지는 시점을 의미하는 '그리드 패리티'를 달성한 곳은 하와이, 독일, 호주, 일본, 이탈리아, 스페인, 그리스, 태국, 남아프리카공화국, 터키, 이스라엘이고,[30] 대한민국이 그리드 패리티를 달성하는 시기는 2019년으로 추정되었다. 그때까지는 태양광 설치하고 보조할 돈으로 그냥 일반 발전 설비를 사들이고 천연가스 발전이 더 이익이었다는 이야기. 정부 보조금을 포함하는 것은 '그리드 패리티'가 아니다. 또한 명목상의 그리드 패리티 도달이 실질적인 그리드 패리티 도달을 의미하는 것도 아니다. 2010년대 태양광 패널 비용에서 높은 비중을 차지하고 있는 폴리실리콘 생산에는 매우 많은 전력이 필요한데, 이 전력에 대한 요금이 현재 매우 낮게 책정되어 있기 때문이다. 이 때문에 kWh당 낮으면 3센트의 요금으로 공장을 돌려서 패널을 만들고 패널에서 생산된 전력은 kWh당 30센트로 파는 상황에서 명목상 그리드 패리티를 달성하는 게 어떤 의미가 있을까? 공장 전기료가 현실적이지 않다면 결국 보조금 지급과 다를 바 없다.

보조금의 영향으로 대한민국에서도 사람들이 미래 연금이라고 생각하고 수억 대출받아서 "자비로" 태양광 설비를 짓는 사례가 2010년대부터 조금씩 생겨나가고 있다. 또, 페널의 가격이 급격하게 싸지고 있기 때문에 지원금에 기대어 흑자를 수년 안에 달성할 수도 있다. 2016년 기준 대한민국에서 태양광 발전의 발전 단가가 200.83원/1kWh 내외로 형성되는데 지원금인 RPS를 제외한 단가는 76.81원/1kWh로 형성되고 있다. 즉 RPS 지원금이 약 124원 가량 된다는 소리. ( 전력통계정보시스템 신재생 에너지 통계.PDF) 애초에 RPS가 나오지 않는 발전들의 생산 단가가 원자력이 67.91원/1kWh, 석탄이 73.93원/1kWh, LNG가 99.39원/1kWh ( 전력통계정보시스템 연간 전력 시장 통계.PDF)임을 감안하면 RPS 지원금을 빼면 태양광 발전의 경제성이 얼마나 허구적인지 잘 알 수 있다. 향후 태양광 패널 가격의 하락으로 태양광 사업자들이 많아져 태양광 발전에 대한 RPS가 줄어들면 대한민국의 태양광 발전도 경제성을 가질 수 있을 거라는 주장도 있으나, 이는 다른 에너지와 태양광 발전의 차이점을 감안하지 못하는 주장이다. 시설 위주인 화력, 원자력 발전은 소규모일 때와 대규모일 때의 상당한 생산 단가의 차이가 생기지만, 패널 같은 유닛 위주의 태양광 발전은 그리 큰 차이가 날 수 없다. 또한 태양광 패널의 증가로 이상적인 토지 면적이 줄어들 경우 부지 땅 값이 태양광 발전부지 매입에 대응하여 오를 수 밖에 없다. 결국 패널 생산가를 빼면 태양광 발전 단가가 하락할 요인이 그리 많지 않다.
2019년에 수력에너지를 제외한 재생에너지 구입단가가 2016년 1분기 대비 56% 상승 했다. 이와 관련해 정용훈 카이스트 원자력 및 양자공학과 교수는 "태양광 발전에 적합한 지역 중 땅값이 낮은 곳은 이미 패널이 가득, 향후에 들어설 설비들은 상대적으로 높은 지가를 부담해야 한다."고 설명했다. 반면에 원자력 발전의 경우 같은 기간동안 11.6%하락 했다고한다. # #

또한 정부가 추진 중인 태양광 정책 발전을 위하여 한전이 민간 태양열 발전소로부터 지속적으로 전기를 비싼 가격에 수입한 후 싼값에 되팔고 있는데, 이로 인해 큰 비효율이 발생하고 있다고 한다. 여기에 2022년부터 러시아 우크라이나 전쟁까지 터지면서 더이상 한전이 감당할 수 없는 엄청난 적자가 누적되고 있다고 한다.
2022년 5월 25일 슈카월드 영상

7.2.2. 발전 변동성

파일:Germany Electricity Generation by source-20170731-20170807-resize.jpg
2017년 7월 31일부터 8월 7일까지의 발전원별 통계

독일에서 태양광의 대규모 도입이 어느 정도 성공적인 이유는 다른 나라와 육로로 연결되어 있어 전기를 사올 수 있기 때문이다. 독일은 2011년에 주변국에서 전력을 수입했으나, 2015년에는 도리어 독일이 유럽에서 가장 많은 전력을 수출하는 전력 수출국이 되었다. 이는 날씨와 일조량에 따라 수요를 초과하여 강제로 생산되는 전기를 수출하는 것이다. 이로 인해 2012년부터 2016년까지 매년 12억 유로 이상의 수익을 내고 있다. 외부 링크 태양광 발전과 풍력 발전을 꾸준히 늘려서 2011년 프랑스에서 독일로 수입되는 전력량이 20TWh 정도였지만 지금은 역으로 1.44TWh 정도 수출하고 있다. 2022년 전력 수출 76.6Mrd. kWh, 수입 49.3Mrd. kWh으로 수익을 거두고 있다.
파일:Germany Electricity Trade-20170731-20170807-resize.jpg

독일의 2017년 7월 31일부터 8월 7일까지의 시간별 전력 수출입 현황. 상단이 수입, 하단이 수출량을 보여준다.

보는 바와 같이 낮 시간대에는 많은 전기를 수출하나 새벽 시간대에는 도리어 전기 수입이 더 많아진다. 이웃 국가와 연결된 송전로가 없는 대한민국은 독일과 같이 태양광 발전이 중단되는 시기에 부족한 전력분을 충당할 에너지 저장 체계가 마땅히 없다.

2016과 2020년[31] 독일의 방식별 발전은 다음과 같다.
발전방식 2016 2020 2022 2023
원자력 80 TWh (14.8%) 64.3 TWh (11.4%) 34.7 TWh (6.0%) 6.7 TWh (1.5%)
갈탄 화력 134.9 TWh (24.9%) 91.7 TWh (16.3%) 116.2 TWh(20.1%) 117.4 TWh (26.1%)
무연탄 화력 99.4 TWh (18.3%) 42.5 TWh (7.5%) 64.4 TWh(11.2%)
천연가스 화력 46.4 TWh (8.6%) 91.6 TWh (16.2%) 79.8 TWh(13.8%) 61.0 TWh (13.6%)
풍력 77.8 TWh (14.4%) 132.8 TWh (23.6%) 125.3 TWh(21.8%) 139.3 TWh (31.0%)
태양 37.5 TWh (6.9%) 50.4 TWh (8.9%) 60.8 TWh(10.2%) 53.6 TWh (11.9%)
바이오 매스 47 TWh (8.7%) 44.1 TWh (7.8%) 44.6 TWh(4.4%) 28.0 TWh (6.2%)
수력 19.1 TWh (3.5%) 18.5 TWh (3.3%) 17.5 TWh(3.0%) 18.5 TWh (4.1%)

바로 위의 표와 상단의 독일에서 낮 시간대에 생산되는 발전원별 발전량을 참고하면 결국 독일도 낮 시간대의 첨두 부하를 태양광으로 담당하고 나머지는 풍력+화력(석탄)으로 해결하며, 부족분에 한하여 덴마크, 노르웨이, 스웨덴에서 생산한 풍력·수력 에너지를 수입하여 충당하는 구조인 것이다. 즉, 2020년 기준으로 풍력 보다 한참 부족하고 바이오매스를 겨우 제친 수준이다. 하지만 2022년 동일*갱신된 자료에서는 태양광이 바이오매스의 2배이상 발전량을 보이고 있다. 원자력 발전에 준하는 발전량을 보이고 있다.#

대한민국에선 태양광 발전은 피크 타임인 오전 시간대에 첨두 부하에 도움을 주는 방식으로 운영되길 희망하고 있으며, 실제로 첨부 부하의 10% 가량을 담당해 주면 전체 전력 설비 측면에서 도움이 될 수 있다. 즉, 태양광은 어디까지나 보조적인 발전 방식이지 전력 믹스에서 주요 역할을 담당하기는 힘들다. 날씨와 기상에 따라 극심하게 변하는 전력 생산은 전력 수급 계획을 까다롭게 하는데, 태양광이야말로 이런 형태의 전력 생산 방식이므로 주력 발전방식이 되기 힘든 것. 친환경 발전의 확대를 위해서는 태양광 뿐 아니라 ESS와 복합발전(태양광+풍력의 조합 등) 형태까지 고려한 정책이 뒷받침되어야하는 이유다.

그리고 태양광발전이 낮 시간대에 발전량이 급격하게 늘어나면 전력부하(=전력사용량)가 급격하게 떨어지면서 부하곡선이 중앙으로 축 처지는 현상, 덕커브현상이 나타난다. '부하가 적어지니까 좋은거겠지?' 라고 생각하기 쉽지만 사실 완전 반대의 의미이다.부하가 적어지면 그만큼 발전량도 줄여야 하지만 발전량을 조절하는데에는 한계가 있다. 어느정도 이상으로 낮출수가 없다는것이다. 즉 발전량을 최대로 낮추어도 적어진 부하를 커버할 수 없다면 바로 과잉발전이 된다는것이다. 대정전, 그러니까 블랙아웃은 전기가 부족해서 생기기도 하지만 오히려 전기가 너무 많은 경우에도 생긴다.

그런데 이러한 전력과잉 현상은 태양광 발전이 늘어나면서 필연적으로 생기는 문제점이다. 전기는 적게 생산해도 문제가 되지만 많이 생산해도 문제가 된다.[32] 남는 전기는 흘려보낼 수가 없으며 무조건 사용해야하는데 만약 전기가 과도하게 생산되면 전력계통의 주파수가 꼬이면서 발전소의 터빈이라던지 공장의 모터라던지 전부다 고장날 가능성이 있다. 이런 이유들때문에 시간마다 전력사용량을 예측하고 발전 계획을 정확하게 짜놔야 하는것이다. 전기가 부족해도 안되고 많아도 안되기 때문이다.

이를 해결하기 위해선 첫째로 에너지를 유동적으로 다른 지역으로 보내고 받는 전력 그리드를 확충한다는 것인데, 미국이나 유럽은 가능하다. 많이 발전하면 옆 나라나 옆 주에 갖다팔수도 있고 부족하면 사올수 있다. 하지만 대한민국은 전력계통으로 봤을때 사실상의 섬이랑 같기에 모든것을 알아서 처리해야한다. 결국 불가능하다. 두번쨰로 ESS(Energy Storge System)기술을 이용하는것인데 ESS는 아직 기술이 원하는만큼 발전하지 못했다. 어느정도 처리할수있겠지만 아직 이만큼의 에너지 유동성을 확보할수는 없다.

ESS기술에 더 투자를 하던지 그리드 인프라 확충에 돈을 더 쓰던지 하면서 늘려야하는데 이러한 뒷받침없이 무작정 태양광발전소에 보조금을 주면서 늘리는 건 어떻게든 문제가 된다.

실제로 이런 상황이 제주도에서는 이미 크게 문제가 되었었다. 제주도는 과도하게 태양광과 풍력발전을 늘리면서 덕커브현상이 나타난지 몇년정도 되어왔고 실제로 지나치게 많은 발전 경고도 몇번 울리면서 발전소 정지한 일도 꽤나 있었다. 2020년 제주도 풍력발전 제어는 77번있었다. 이걸 해결하기 위해 제주도에 지나치게 많은 전력을 본토에 보내는것으로 해결한다고 하는데 아직 본토로 송전하는 송전선조차 없는 상황이다.[33]
2022년 3월 23일 SBS뉴스
2022년 3월 21일 KBS뉴스

7.2.3. 온도에 따른 효율 감소

온도에 따른 효율성 문제도 있다. 태양광 패널은 25도가 효율성이 가장 좋고 그 이상에선 효율성이 감소한다. 온도가 너무 높으면 실리콘 셀 자체의 에너지 변환효율이 감소하기 때문이다. 비정질 실리콘 태양전지는 온도에 의한 에너지 변환 효율의 감소가 낮은 편이다.#

일사량은 많지만 기온이 섭씨 50~60도를 넘나드는 사막 지역에서는 모래먼지 등에 의한 오염과 합쳐서서 효율성이 떨어진다.[34] 그래서 사막이나 고온 지역에서는 태양열 발전이 주류다. 사우디는 국토 거의 대부분인 사막인데, 태양광 발전 패널을 들어왔다가 효율 저하는 고사하고 관리부실인지 이 지역의 높은 열을 견디지 못하고 공항에서 녹아버린 황당한 사례도 있었다. 그래서 태양광 발전이 효율적인 나라들은 역설적으로 멕시코 만류의 영향을 받는 유럽 국가들이다. 중국의 경우엔 주요 사막지대인 신장과 내몽골에 태양광 발전시설을 세우면서 국가주도로 사업체를 성장시켰다. 이 후 일대일로 사업으로 태양광과 관련된 사안에 이 업체들을 몰아넣으면서 크게 성장시켜나갔고, 결국 2020년엔 태양광 발전에 필요한 핵심 부품을 두고 벌어진 치킨게임에 승리하게 되었다.

7.2.4. 산림 파괴

산림파괴에 대한 비판이 있다.링크 친환경 발전이란 이름 앞에 보조금을 쏟아내 발전소용 태양광 시설들을 국토 곳곳에 깔고 있는데, 원자력 발전이나 화력 발전소와 달리 산지에도 설치하기 때문이다. 구체적으로 2016~2018년 동안 축구장 6000개 규모의 산림이 훼손되었다. 또한 태양광 패널 설치로 인해 민둥산으로 전락해버린 산지는 산사태 속출의 원인이 되고 있다.링크

산림청에서도 "보전 국유림에 태양광 시설 등을 설치하는 과정에서 벌목과 같은 산림 훼손이 발생한다"면서 산지 태양광 개발에 난색을 표한 적 있으며, 실제로 2018년 12월부터 산지 태양광 설치에 대해 규제를 하기 시작했다. 실제로 산지 태양광 허가 건수는 2017년 1435㏊(헥타르), 2018년 2443㏊, 2019년 1024㏊, 2020년 5월까지 112ha로 급감하는 추세이다. #

미국과 중국의 경우에는, 대륙의 기상 답게 태양광 패널로 산 하나를 뒤덮어버리고, 수십km에 달하는 엄청난 규모의 패널을 설치한다. 당연히 주변 경관을 망쳐버리는 건 당연하고, 근방에 사는 생물들의 서식지 파괴는 필연적이다. 특히, 박쥐에게는 위협적이라는 연구결과가 나왔다.#

7.2.5. 시공업체의 난입 및 불량

태양광 발전은 대표적인 분산발전 시스템으로 기본적으로 태양광 패널을 지지하는 지지대, 전선, 인버터, 전력량계 및 통신 시스템으로 구성되어있다. 터빈을 이용하는 중앙 발전체계보다 간단하게 모듈로 제작되어 있어 설치가 비교적 매우 간단하다는 장점이 있다. 이는 낮은 수준의 시공, 장비업체의 난입으로 이어졌다. 심지어 무자격 업체가 시공하는 일이 벌어지기도 했다.#. 이런 업체들은 인증이 되지않는 인버터를 사용하여 화재, 정전을 일으킬 가능성이 높다. 안전하게 설치되더라도 접지불량, 일사각조차 고려하지않는 설치 등 발전 효율이 급감할 수 있다.

8. 논란과 오해

8.1. 중금속 함유

태양전지 중에서 CdTe패널이 중금속 우려가 있다. 이타이이타이병으로 유명한 그 카드뮴이다.2021년 현재 국내에서 판매되는 태양전지 중 CdTe 의 비율은 0.1%도 되지 않는다. CdTe기반의 태양전지는 Si에 비해 광전변환률이 높아서 사용되는 소자인데 주로 집광형 발전시스템에 사용되는 것으로 전체 태양광발전 시스템에서 차지하는 비중은 거의 0이며 이마저도 점점 줄어들고 있다. 이유는 Si 기반 태양전지 가격이 2008년 이후 급속히 떨어지며 집광형이나 기타 발전효율을 올리는 노력의 경제성이 많이 퇴색되었고, 반대로 CdTe기반 전지는 핵심 재료인 텔루륨이 희소한 탓에 가격 경쟁력을 확보하는 데 한계가 있기 때문이다.

대한민국에 들어오는 태양광 패널에는 크롬과 카드뮴이 포함되어 있지 않고(법적으로 금지), 납 농도는 0.064~0.541mg/L로 폐기물 관리법에서 정한 3mg/L보다 훨씬 낮은 수준이다. 검출된 중금속도 해당 태양광 패널에선 쓰이지도 않아 검출되지 않아야 하지만 이는 실험과정에서 발생한 오차 수준으로 판단었다. #
한국에너지기술연구원에 따르면 유리(76%), 알루미늄(8%), 실리콘(5%), 구리(1%) 등이 구성 성분이다. 그나마 구성 성분은 재활용할 수 있는 자원이기 때문에 사용 후 회수된다. 실제 독일에서는 20~30년간 태양광 발전기를 사용하고 나서, 태양광 발전기에 발전을 담당하는 핵심부품 모듈을 싼 값에 저개발 국가에 판매하기도 한다.

최근의 전자 기기들은 RoHS[35] 등 각종 환경 규제로 인하여 중금속 사용량을 줄이는 추세이며 태양광 패널도 예외가 아니다. 태양광 패널 제작에 쓰이는 납땜의 납 성분에 대한 우려도 있지만 국내에서 시판 중인 땜납의 대부분은 RoHS를 만족하고 있다. 이미 수상 태양광의 경우 무연 땜납이 의무화 되었으며, 육상의 경우도 비슷하게 전환될 것으로 예상된다.

9. 태양광 패널 유형 전망

실리콘 태양전지는 만들 때 다량의 전기를 소모하기 때문에 원가 비중 중 전기료가 높다.

염료형 태양전지는 프린팅 방식으로 제조되기 때문에 그 문제가 없다. 다만 내구성(수명) 문제가 있어서 실용화는 거의 포기단계다.

탠덤(다중접합) 태양전지는 매우 고가이므로 주로 우주에서만 사용되며, 지상에서는 렌즈로 집광하여 이용하는 방식이 연구되고 있다.

차세대 인쇄방식의 태양전지로는 유기페로브스카이트 기반의 태양전지가 꾸준히 연구되고 있다. 실리콘 태양전지를 넘어서는 효율이 보고 되고 있으나, 제조시 중금속이 포함된 요오드화납이 필요한 경우가 많고 결정적으로 수명 문제가 해결되지 않아 상용화까지는 거리가 있다. 다만 연구개발을 거듭하며 수명도 점차 늘고 있으므로 근미래(2020년대 중반 이후)에는 상용화가 가능할 것으로 전망된다. 또한 페로브스카이트와 실리콘을 동시에 사용하는 탠덤 태양전지도 개발중에 있으며, 이 둘을 따로 사용하는 것보다 높은 효율을 가진다.

태양전지에서의 가성비는 아직도 실리콘 전지를 넘어서는 물질이 별로 없다.

10. 기타

  • 우주를 배경으로 한 경우를 제외하면 태양광 발전이 등장하는 매체에서는 주간에만 발전이 되는 한계 묘사가 자주 등장한다. 서브노티카, 팩토리오, 림월드, OFFWORLD - Trading Company 등에서 재현되었다. 밤에는 태양광 발전소가 무용지물이 되어 축전지나 기존의 발전소가 필요하다. 시티즈: 스카이라인심시티(2013)에선 밤에 발전 효율이 줄어드는 것으로 묘사된다. 심시티 4에는 태양열 발전소만 있으며, 태양광 발전은 커뮤니티에서 제작한 플러그인으로만 가능하다.[36] 월-E 또한 태양광 동력 로봇으로 인류가 지구를 버리고 떠나 전기가 다 끊어진 와중에도 활동이 가능했다.
  • 발전시설 노후화의 발전소의 부족으로 북한에서 전력부족 문제가 심각한데 2010년대에는 북한 국가차원에서 부족한 에너지를 태양광으로 채우고 있으며 주민들 사이에서도 전기 공급이 별로 안되니 태양광으로 전기를 얻는 가정이 많기 때문에 태양광의 보급률이 높다. 태양광으로 움직이는 자동차도 있을 정도이다. 가정에서 대충 쓸만한 전기를 얻을 수 있는 수준이지만 근본적으로 가정용이나 기업소에서 얻는 전기를 얻는 수준이지 대량의 전기가 필요한 철도 같은 것을 정상화하기에는 턱 없이 모자란 수준이다. 즉, 전체적으로 볼 때 모자라는 전력을 땜빵하는 수준이지 전력난을 해결하기에는 턱 없이 모자란 수준이라는 것이다.
* 태양광 발전기 설치 관련하여 전국적으로 사기꾼들이 기능을 부리고 있다. 주로 정부의 지원금에 대해 강조하여 거저먹기라며 꼬드기는 경우가 많은데 실제로 사기당해서 노후자금 같은 재산을 잃고 나락으로 떨어지는 사례가 많으므로 반드시 자세히 확인 후 계약을 체결해야 한다.
  • 건물 외벽이나 창문, 지붕 타일 등에 태양전지를 결합하여 발전하는 방식도 개발되어 있다. 일반 태양광 패널을 설치하는 것보다 미관상의 침해가 적다.
  • 남반구적도 지역에서 태양광 발전을 할 경우 태양광 패널을 남향으로 설치하면 효율이 떨어진다. 태양이 뜨는 각도가 북반구와 다르기 때문. 남반구에서는 북향으로, 적도에서는 지면에 수평으로 놓아야 최대의 효율을 얻을 수 있다.


[1] Photovoltaic effect. 넓은 의미에서 광전효과(photoelectric effect)의 하위 분류이나, 흔히 말하는 광전효과와는 차이가 있다. 광전효과는 주로 빛에 의해 전자가 자유전자로 튀어나오는 경우를 가리키고, 광기전효과는 물질 내부에서 캐리어(전자나 양공)가 들뜬 상태가 되어 전압 또는 전류를 생성하는 경우를 이른다.[2] 출처 : 신재생에너지보급실적조사(2024), 한국에너지공단[3] 유럽은 태양광 뿐 아니라 재생에너지 자체를 하기 매우 좋은 지역인데, 이것도 바로 멕시코 만류에 힘입은 것이다.[4] 당장 대한민국은 발전량이 넘치면 그 전력을 소비해줄 해외 소비처가 없다. 그러면 반응성이 좋은 발전소의 터빈을 멈추거나 혹은 양수를 해서 에너지를 저장해야 하는데 그 효율이 좋지 못하다. 반대로 전력이 부족한 순간에는 해외에서 전력을 수입할 수도 없다.[5] 2011년에는 일부 전기를 원자력 발전을 하는 프랑스를 비롯한 이웃나라에서 수입하거나 천연가스 발전 시설을 크게 늘렸다. 특히 2011년 후쿠시마 원자력 발전소 사고 직후 원자력 발전소들을 정지시키면서 전력 수입 현상이 심했다. 물론 2011년 태양광 및 풍력 발전을 단계적으로 높여가는 과정에서 도입한 임시 시설/정책이라는 취지이긴 하다. 2015년 독일은 프랑스로부터 3.8TWh의 전력을 수입했고 13.4TWh를 프랑스로 수출했다.[6] 제조사 따라 다르긴 하지만 대체로 5년 남짓 무상 A/S가 되긴 한다. 물론 사용자 과실로 인한 고장은 제외지만 일단 설치하고 나면 건드릴 필요가 없는 이상 사용자 과실로 인한 고장은 없다고 보면 된다. 오히려 고장을 즉각 알아채는 경우는 드물고, 두세달 있다가 고장 사실을 알게 될 정도로 관심이 없어진다. 그것도 한전에서 연락이 와서 알게 된다.[7] 보조금 제외 가격. 순수 설치비는 5~600만원 사이. 여기서 30~50%정도를 국가보조금(설치기업에 직접 지급, 전체 사업 고정액.)을 받고, 여기서 1~200만원정도를 시/군, 도 보조금(설치자에게 지급, 시군별로 천차만별.)을 받는다.[8] 베란다 난간이 아닌 건물 외벽이나 옥상에 설치 가능한 형태도 있다. 또한 꼭 베란다가 아니더라도 난간이 있는 장소라면 미니 태양광 발전 설비를 설치할 수 있다.[9] 따라서 별도의 전기 공사는 필요하지 않으나 베란다에 콘센트가 없거나 에어컨 실외기 연결용 구멍이 없다면 별도의 구멍을 뚫고 연결해야 한다. 또는 창문 틈사이를 통과할 수 있는 구리판 형태의 얇은 전선을 사용하여 구멍을 뚫지 않고 연결하는 경우도 있다.[10] 아예 태양광 발전 사업을 신청하여 옥상 등에 발전시설을 설치한 경우에는 한전에서 자가발전기와 호환되어 거꾸로 돌 수 있는 디지털 계량기를 달아주는 것으로 보인다.[11] 50W 패널은 세로로 길쭉하기 때문에 미관상의 문제가 적은 편이다.[12] 특히 베란다 난간이 약한 오래된 아파트에서는 금지할 가능성이 더 높으며, 일부 아파트 단지에서는 미관상의 우려로 동일한 크기와 디자인의 태양광 패널을 동일한 위치에만 설치하도록 규정한 곳도 있다.[13] 사진의 단지는 서울특별시 성동구e편한세상 금호 파크힐스[14] 만일 정전시에도 인버터가 동작한다면 발전 전기가 집 밖으로 흘러나가 전력 시설을 수리하는 인부가 위험해진다. 심지어 인버터 자체는 220V만 출력하더라도 변압기를 거치면 22900V 등 높은 전압으로 올라갈 수 있다. 이는 다른 종류의 자가 발전기에도 해당하므로 정전시에도 절대 가정 내 콘센트에 자가 발전기를 연결하지 말도록 하자. 물론 메인 차단기를 내리고 트는 방법도 있으나, 가정 내 부하를 모두 감당하고도 남을 출력을 가진 발전기가 아니라면 발전기가 과부하될 수 있으므로 이 또한 권장되지 않는다.[15] 19인치 랙에 12개씩 4랙으로 하는 구성이며, 일반 가정에서 충분히 구현 가능한 크기이다. 이 때의 용량은 245kWh @ 1Hr Discharge[16] 그러므로 일반적인 48V 하이브리드 인버터에 일반적인 5kWh 48팩 구성을 할 경우 일반전기로 충전하는데 대략 6만5천원 가량의 비용과 완충에 3.4일의 시간이 소요되게 된다.[17] 수상 부유식 태양광 발전, 혹은 부유식 태양광 발전이라고도 한다.[18] 현실에서는 접시 형태로 만들 가능성이 낮다.[19] 계통연계형을 준독립형처럼 쓰기에는 전압이 일정하지 않으므로, 사용하기가 어렵다. 태양광 패널 자체가 전압이 일정하지 않기 때문이며, 인버터에서 나오는 전압도 기본 230V에서 모듈이 많은 제품군은 430V까지 나오는 경우도 있다. 준독립형에서 쓰는 MPPT 컨트롤러는 전압을 일정하게 맞춰주는 역할을 하며, 독립형에서는 충전 전압을 일정하게 하는 역할을 하므로, 필수 부품에 해당된다.[20] 2019년 캘리포니아 대정전 사태에서 실제로 벌어진 일이다. 민영 발전 사업자인 PG&E가 대규모 산불을 막기 위해 캘리포니아의 많은 가구에 전력 공급을 중단했는데, 캘리포니아주에서 자가 태양광 발전을 하는 가구들은 모두 계통연계형 태양광 발전이기 때문에 이들도 정전이 되었다. 문제는 "우리 집은 태양광 발전이니까 정전 되어도 문제 없어"라고 착각하고 아무 대비도 하지 않은 가구가 많았다는 것이다.[21] 다만 화성에서의 풍력 발전 가능성도 논의된 적 있다. 바로 화성의 위성인 포보스에 풍력 발전기를 거꾸로 매달아 7시간 39분만에 화성을 공전하는 막대한 운동에너지를 전기 에너지로 바꾸자는 것이다. 화성의 대기가 너무 희박하지만 포보스의 속도가 충분히 빠르니 어마어마한 장력을 견딜 연결선만 만들 수 있으면 가능성은 있다.[22] 우리가 흔히 볼 수 있는 계산기를 잘 보면, 가로는 길고, 세로는 짧은 검은 무언가가 보이는데, 그게 태양광 패널이다.[23] 발전효율보다 안전에 문제가 생긴다.반도체 소자를 이용하여 발전하기 때문에 반영구적인 수명을 가진다. 하지만 차단하는 스위치, 릴레이, 제어보드는 수분에 의한 부식, 산화, 냉각팬에 의한 진동에 의해 제어 시스템에 문제가 생길 수 있다. 인버터를 사용하는 대표적인 전기기기인 냉장고와 에어컨도 10년의 보증을 가진다는 점에서 유사하다.[24] 효율 75%가 될 때까지의 기간으로, 관리만 잘하면 30년 이상 쓸 수 있다. 또한 배터리의 경우 배터리 유형에 따라 편차가 있다. 납 축전지는 3~5년만 사용 가능하지만, 리튬인산철이나 리튬티탄산 배터리는 10년 이상도 거뜬하다.[25] REC 가중치가 적용되는 ESS를 사용하는 사업장이 대표적이다.[26] 해당 발전방식의 설비 중 가장 작은 발전설비의 가격[27] 하지만 이는 미국에서 얻은 태양광 발전에 유리한 국가에서 얻은 데이터인 만큼 국내환경과 직접적인 비교를 어렵다.[28] 물론 ESS 가격도 태양광 못지않게 낮아지는 중이라서 독립형에 대한 걱정도 같이 줄어드는 중이다.[29] 이것도 다른 발전 방식에 비하면 매우 저렴한 편이다. 풍력은 3kw급이 3000만원이 드니까 말 다했고, 수력의 경우 비용이 비싼 편은 아니지만 장소 제약이 워낙 심해서 사실상 장소부터 비싸기 때문이다.[30] 공통적으로 하와이와 태국을 제외하면 모두 여름 날씨가 맑은 지중해성 기후나 해양성 기후를 띄고 있으며, 개활지가 많다.[31] 2022년 자료 출처: Germany’s energy consumption and power mix in charts, 03 Aug 2021, 10:00, Kerstine Appunn, Yannick Haas, Julian Wettengel 2020년 자료 출처를 보면 알겠지만 아래 표에 나열된 방식 외에도 다른 형태의 발전이 3.9%가량 있어서 아래 퍼센트의 합이 100%가 되지 않는다.[32] 실내자전거를 타고 있다고 생각하면 이해가 쉽다. 적당한 단수에서 신나게 최대 속도로 페달을 밟고 있는데, 거기서 갑자기 단수가 높아져도(부하가 커져도) 몸에 충격이 가지만, 갑자기 단수가 낮아져도(부하가 낮아져도) 다리가 헛돌면서 남아도는 힘이 페달이 아니라 사람 몸에 전달되기 때문에 몸에 충격이 가는 것이다.[33] 송전망 부족으로 인해 화력발전소등도 절반만 가동 중이다.#[34] 이로 인해 사막이나 황무지에 위치한 태양광 발전소는 자동 로봇 청소기를 도입하여 효율이 감소할때마다 먼지를 치우기도 한다.[35] Restriction of Hazardous Substances, 유해물질 제한이라는 뜻이다. 중금속 중에는 납, 카드뮴, 6가 크로뮴, 수은 등이 RoHS 규제 대상이다.[36] 발전소에서 낮/밤 구분을 할 수 없는지 밤으로 설정하거나 해가 져도 전기를 생산한다. 달빛으로 생산하나 보다.

분류