| 수와 연산 Numbers and Operations | |||
| {{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#765432> 수 체계 | 자연수(수학적 귀납법 · 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수(정수가 아닌 유리수) · 실수(무리수 · 초월수) · 복소수(허수) · 사원수 · 팔원수 | |
| 표현 | 숫자(아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법(자연어 수 표기법 · 과학적 표기법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 · BEAF · 버드 배열 표기법) · 진법(십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수(분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수{유한소수 · 무한소수(순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수 | ||
| 연산 | 사칙연산(덧셈([math(Sigma)]) · 뺄셈 · 곱셈(구구단 · [math(Pi)]) · 나눗셈) · 역수 · 절댓값 · 제곱근(이중근호) · 거듭제곱 · 로그(상용로그 · 자연로그 · 이진로그) · 역산 · 검산 · 연산자 · 교환자 · 계승 | ||
| 방식 | 암산(방식) · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자 | ||
| 용어 | 이항연산(표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
| 기타 | 수에 관련된 사항(0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산(48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기(바퀴 이론) · 0의 0제곱 | }}}}}}}}} | |
1. 개요
連分數 / continued fraction분모가 정수와 분수의 합으로 연달아 표기되는 분수. 일반적으로 유리수는 두 정수의 비로 나타낼 수 있고 무리수는 그럴 수 없지만, 연분수라는 특수한 분수를 사용하면 무리수도 분수로 나타낼 수는 있다. 다만, 어떤 수를 연분수로 나타낼 때, 유리수라면 유클리드 호제법에 의해 언젠가는 끝이 나지만 무리수라면 연분수가 한없이 이어진다. 후술했듯이 어떤 무리수의 근사치인 유리수, 즉 근사분수를 찾기 위해서도 연분수가 쓰인다.
2. 전개 방법
가장 기본적으로는, 전개하고자 하는 수를 정수 부분과 소수 부분으로 나눈 뒤, 그 소수 부분의 역수를 취하는 조작을 반복한다. [math(\dfrac{12}7)]를 연분수로 전개해보자.[math(\dfrac{12}7 = 1+\dfrac57 = 1+\cfrac1{\cfrac75} = 1+\cfrac1{1+\cfrac25} = 1+\cfrac1{1+\cfrac1{\cfrac52}} = 1+\cfrac1{1+\cfrac1{2+\cfrac12}} )]
이 방법을 쓰면 연분수의 모든 분자 자리가 1이 되는데, '여러 무리수의 연분수 전개' 문단에서 보듯이 꼭 이렇게 해야만 수학적으로 옳은 것은 아니다.
다만, 일반적으로 분자를 1로 고정하는 것은 다른 표기법과의 호환이 되기 때문에 권장되는 편이다. 예를 들어서 위에 있는 [math(\displaystyle \frac{12}{7})]의 경우는 [math(\left[1;1,2,2\right])]나 [math(\left<1,1,2,2\right>)]로 표기할 수 있다.
또한, 만약 반복되는 순환마디가 존재한다면, 순환소수와 마찬가지로 해당하는 순환마디에 윗줄을 그어서 표기한다. 예를 들어서 [math(\sqrt{3})]의 경우는 [math(\left[1;\overline{1, 2}\right])]나 [math(\left<1,\overline{1, 2}\right>)]로 표기할 수 있다.
여기에 만약 어떤 연분수 [math(\xi)]가 순환마디를 가지는 순수 순환연분수[1]라면 이 연분수는 이차 무리수[2]이며, 동시에 [math(\xi>1)]이고, [math(\overline{\xi})][3]는 [math(-1<\overline{\xi}<0)]을 만족한다.
3. 근사분수
convergents · 近似分數앞서 설명했듯이, 전개하고자 하는 수를 정수 부분과 소수 부분으로 나눈 뒤, 그 소수 부분의 역수를 취하는 조작을 반복하여 얻는 연분수의 모든 분자 자리는 1이 된다. 이렇게 연분수로 전개해가다가, 특별히 큰 수가 등장하면 거기에서 전개를 멈추고, 그 수가 나오기 바로 전까지의 연분수를 계산해서 얻는 값이 해당 무리수의 근사치인 유리수가 된다. 이 수를 근사분수라고 한다. 그 '특별히 큰 수'가 크면 클수록 정밀도 높은 근삿값이 나온다. 예를 들어 [math(\pi)]의 근사치인 유리수를 찾아보자. [math(\pi)]는 무리수이므로 [math(\pi)]를 이 방법으로 전개하면 다음과 같이 한없이 이어진다.
[math(\pi=3+\cfrac1{7+\cfrac1{15+\cfrac1{1+\cfrac1{292+\cfrac1{1+\cfrac1{\ddots}} }} }} )]
여기에서 292라는 특별히 큰 수가 등장하였으므로, 그 바로 전에서 끊은 후 그 값을 계산하면 된다. 곧,
[math(3+\cfrac1{7+\cfrac1{15+\cfrac1{1} }} = \dfrac{355}{113} (\approx 3.1415929204) )]
가 바로 [math(\pi)]의 근삿값이다. 참고로 [math(\pi\approx 3.1415926536)]이다.
물론, 연분수 계산을 많이 진행할수록 값은 정확해지겠지만 그 계산 결과는 매우 복잡해질 것이다. 적당한 선에서 간결한 근삿값을 얻고 싶다면, 연분수 계산 도중 특별히 큰 수가 나오면 거기서 끊어 버리면 된다.
한편, 극히 예외적인 경우로는 황금비
[math(\varphi = \dfrac{1+\sqrt5}2 = 1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{\ddots}} }} }} )]
가 있다. 모든 정수 부분에 계속해서 1만 나오는데, 이 방법으로는 [math(\varphi)]의 근사치가 되는 마땅한 유리수를 찾을 수 없다. 이런 경우는 달리 찾아볼 수가 없다.[4]
짝수 근사분수는 실제 값보다 작고 홀수 근사분수는 실제 값보다 크다.
4. 여러 무리수의 연분수 전개
아래는 각각 [math(sqrt2)], [math(sqrt3)], 황금비, 원주율, 자연로그의 밑, 오메가 상수, 겔폰트-슈나이더 상수, 겔폰트 상수의 연분수 전개이다. 뒤의 대괄호로 묶인 부분은 다른 표기법이다.- [math(\displaystyle\sqrt2=1+\cfrac1{2+\cfrac1{2+\cfrac1{2+\cfrac1{2+\cfrac1{2+\cfrac1{2+\cfrac1{2+\cfrac1{\ddots}} }} }} }}=\left[1;\overline{2}\right])]
- [math(\sqrt3=1+\cfrac1{1+\cfrac1{2+\cfrac1{1+\cfrac1{2+\cfrac1{1+\cfrac1{2+\cfrac1{1+\cfrac1{\ddots}} }} }} }}=\left[1;\overline{1, 2}\right])]
- [math(\varphi=\dfrac{1+\sqrt5}2 = 1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{\ddots}} }} }}=\left[1;\overline{1}\right]\textrm{ or }\left[\overline{1}\right])]
- [math(\displaystyle \pi=3+\cfrac{1^2}{6+\cfrac{3^2}{6+\cfrac{5^2}{6+\cfrac{7^2}{6+\cfrac{9^2}{6+\cfrac{11^2}{6+\cfrac{13^2}{6+\cfrac{15^2}{\ddots}} }} }} }} = 3+\cfrac1{7+\cfrac1{15+\cfrac1{1+\cfrac1{292+\cfrac1{1+\cfrac1{\ddots}} }} }} =\cfrac4{1+\cfrac{1^3}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{\ddots}} }} }} )]
- [math(e= 2+\cfrac1{1+\cfrac1{2+\cfrac2{3+\cfrac3{4+\cfrac4{5+\cfrac5{\ddots}} }} }}=2+\cfrac1{1+\cfrac1{2+\cfrac1{1+\cfrac1{1+\cfrac1{4+\cfrac1{1+\cfrac1{1+\cfrac1{6+\cfrac1{\ddots}}}}}}}}})]
- [math(\Omega= W(1)= \cfrac1{1+\cfrac1{1+\cfrac1{2+\cfrac5{3+\cfrac{17}{10+\cfrac{133}{\ddots}} }} }})][5]
- [math(2^{\sqrt 2} = 2+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{72+\cfrac1{3+\cfrac1{\ddots}} }} }})]
- [math(e^{\pi} = (-1)^{-i} = 23+\cfrac1{7+\cfrac1{9+\cfrac1{3+\cfrac1{1+\cfrac1{1+\cfrac1{\ddots}} }} }})]
5. 기타
수를 넣으면 연분수로 전개시켜 주는 사이트도 있다.#모든 무한 단순 연분수는 무리수이고(단, 분자에 0만 반복되는 경우는 제외한다.), 모든 유한연분수는 유리수이다.
여담으로, 2부터 99까지의 제곱수가 아닌 수의 제곱근을 연분수로 만들었을 경우, 가장 순환마디가 큰 수는 [math(\sqrt{94})]의 15자리이며 그 다음은 [math(\sqrt{76})]의 12자리이다.
[1] 괄호 표기법 기준으로 첫번째 숫자, 혹은 두번째 숫자부터 순환마디인 연분수[2] 2차방정식의 해가 되는 무리수를 의미[3] 이차방정식의 켤레근[4] 여기에서 중간을 끊어 버리면, 피보나치 수열의 항의 비율 [math(F_n/F_{n-1} )]이 된다. 바꿔 말하면, [math(F_n/F_{n-1} )]은 극한값인 [math(\varphi)]로 매우 느리게 수렴한다. 상대오차 기준으로 [math(\varphi)]와 [math(2584/1597)]가 [math(\pi)]와 [math(355/113)]보다 약간 떨어지는 정밀도로, 정밀도를 높이려면 어마어마하게 큰 피보나치 수가 필요하단 걸 알 수 있다. 피보나치 수열 참고.[5] [math(W)]는 람베르트 W 함수이다.