360도은(는) 여기로 연결됩니다.
miwa의 음반 및 노래에 대한 내용은 360° 문서 참고하십시오. 수학상수 Mathematical Constants | |||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | [math(^\ast)] 초월수임이 증명됨. | ||||
[math(0)] (덧셈의 항등원) | [math(1)] (곱셈의 항등원) | [math(sqrt{2})] (최초로 증명된 무리수) | [math(495)], [math(6174)] (카프리카 상수) | [math(0)], [math(1)], [math(3435)], [math(438579088)] (뮌하우젠 수) | |
[math(pi)] (원주율)[math(^\ast)] | [math(tau)] (새 원주율)[math(^\ast)] | [math(e)] (자연로그의 밑)[math(^\ast)] | [math(varphi)] (황금수) | [math(i)] (허수단위) | |
[math(G)] (카탈랑 상수) | [math(zeta(3))] (아페리 상수) | [math({rm Si}(pi))] (윌브레이엄-기브스 상수) | [math(gamma)] (오일러-마스케로니 상수) | [math(gamma_n)] (스틸체스 상수) | |
[math(Omega)] (오메가 상수)[math(^\ast)] | [math(2^{sqrt{2}})] (겔폰트-슈나이더 상수)[math(^\ast)] | [math(C_n,)] (챔퍼나운 상수)[math(^\ast)] | [math(A,)] (글레이셔-킨켈린 상수) | [math(A_k,)] (벤더스키-아담칙 상수) | |
[math(-e, {rm Ei}(-1))] (곰페르츠 상수) | [math(mu)] (라마누잔-졸트너 상수) | [math(B_{2})], [math(B_{4})] (브룬 상수) | [math(rho)] (플라스틱 상수) | [math(delta)], [math(alpha)] (파이겐바움 상수) |
1. 개요
3Blue1Brown의 설명. |
2. 상세
[math(\theta/{\rm rad} = \dfrac lr)] |
이 때문에 [math(tau=2pi=6.283185cdotscdots)]를 사용해야 한다고 주장하는 학자들이 있다. 미국 물리학자 마이클 하틀(Michael Hartl)의 '[math(tau)] 선언문', 우리나라 뉴스
이 상수를 이용하면 원주의 길이는 [math(\tau r)], 원의 넓이는 [math(\dfrac12 \tau r^2)]이 된다. 이 두 식은 파이를 사용한 식보다 훨씬 근본적인 식이다.
호도법을 쓸 때도 한 바퀴가 [math(\tau{\rm\,rad})]이라서 편하다. 예를 들면 한 바퀴의 [math(\dfrac12)]은 [math(\dfrac12\tau{\rm\,rad})]이 된다. 그래서 삼각함수에서 [math(\sin)], [math(\cos)] 함수의 한 주기가 [math(\tau)]가 된다.
오일러 공식에 [math(\tau)]를 대입하면 [math(e^{i\tau}=1)]이 된다.
2.1. 물리학
물리학에서도 [math(\pi)]보다 [math(2\pi)]가 자주 등장하는데, 등속 원운동에서 각속도 [math(\omega)]로 [math(1)]회전하는 데에 걸리는 시간(주기 [math(T)])은 [math(T = \cfrac{{\color{red}2\pi}{\rm\,rad}}\omega)]이라든지, 플랑크 상수를 [math(2\pi)]으로 나눈 디랙 상수 [math(\hbar = \cfrac h{\color{red}2\pi})] 등이 대표적인 예이다. 위의 예시를 [math(\tau)]로 나타내면 [math(T=\cfrac{\tau{\rm\,rad}}\omega)], [math(\hbar=\cfrac h\tau)]가 되어 깔끔한 식이 된다.특히 플랑크 상수 혹은 디랙 상수를 쓰는 물리 상수의 경우, 이를테면 슈테판-볼츠만 상수 [math(\sigma)]는 [math(\sigma = \cfrac{{\color{red}2}\pi^5{k_{\rm B}}^4}{{\color{red}15}c^2h^3} = \cfrac{\pi^2{k_{\rm B}}^4}{{\color{red}60}c^2\hbar^3})]로 계수가 변하여 외우기 곤란하다는 문제점이 있으나 [math(\tau = 2\pi)]를 쓰면 [math(\sigma = \cfrac{\tau^5{k_{\rm B}}^4}{{\color{blue}240}c^2h^3} = \cfrac{\tau^2{k_{\rm B}}^4}{{\color{blue}240}c^2\hbar^3})]로 계수가 일정해지는 장점이 있다. 이 밖에도 미세구조상수 [math(\alpha = \cfrac{e^2}{{\color{red}4}\pi\varepsilon_0c\hbar} = \cfrac{e^2}{{\color{red}2}\varepsilon_0ch})] 역시 [math(\alpha = \cfrac{e^2}{{\color{blue}2}\tau\varepsilon_0c\hbar} = \cfrac{e^2}{{\color{blue}2}\varepsilon_0ch})]로 [math(\tau)] 유무의 차이만 있으며 이는 보어 마그네톤 [math(\mu_{\rm B} = \cfrac{e\hbar}{{\color{blue}2}m_{\rm e}} = \cfrac{eh}{{\color{red}4}\pi m_{\rm e}} = \cfrac{eh}{{\color{blue}2}\tau m_{\rm e}})], 핵 마그네톤 [math(\mu_{\rm N} = \cfrac{e\hbar}{{\color{blue}2}m_{\rm p}} = \cfrac{eh}{{\color{red}4}\pi m_{\rm p}} = \cfrac{eh}{{\color{blue}2}\tau m_{\rm p}})] 등에서도 마찬가지이다.
3. 표기
[math(\tau)]는 turn의 머리글자 t에 대응하는 그리스 문자 τ에서 유래했다.[1]물론 아직 공식화 된 것은 아니기 때문에 다르게 쓰는 예도 있다. 2001년에 최초로 이를 주장한 로버트 팔레이(Robert Palais)는 [math(pi)]의 다리(?)가 3개인 [math(pimskip -7.8 mu pi)]를 썼었다. 정황상 1958년에 알버트 이글(Albert Eagle)이 수식의 간편화를 위해 이미 [math(\tau=\dfrac\pi2)]를 주장했었던 터라 새로 기호를 만들어냈던 것으로 보이는데 당연히 아무런 명분도 없었던 알버트의 제안은 소리없이 묻혔다. [math(\tau = 2\pi)]가 제안된 건 꽤 최근으로 2010년에 마이클 하틀이 주장했으며 전술한 '[math(\tau)] 선언문'을 쓴 사람이다.
다만 기계공학이나 재료공학 분야에서는 타우라는 문자를 적용한다면 한 가지 문제가 있으니, 전단응력으로 이미 타우를 사용 중이라는 점이다. 가장 간단한 해결방법으로는 전단응력이 텐서량이므로 전단응력을 볼드체로 표기하는 것이다. 예를 들어 최대전단응력설(Tresca 이론)에 의한 축의 지름을 나타내는 식은
[math(d=\sqrt[3]{\dfrac{16T}{\pi\boldsymbol{\tau_{\bf max}}}}=\sqrt[3]{\dfrac{32T}{\tau\boldsymbol{\tau_{\bf max}}}})] |
4. 값
{{{#!folding 타우 소수점 이하 1000자리 [펼치기 · 접기] | 6.2831853071795864769252867665590057683943387987502116419498891846156328125724179972560696506842341359642961730265646132941876892191011644634507188162569622349005682054038770422111192892458979098607639288576219513318668922569512964675735663305424038182912971338469206972209086532964267872145204982825474491740132126311763497630418419256585081834307287357851807200226610610976409330427682939038830232188661145407315191839061843722347638652235862102370961489247599254991347037715054497824558763660238982596673467248813132861720427898927904494743814043597218874055410784343525863535047693496369353388102640011362542905271216555715426855155792183472743574429368818024499068602930991707421015845593785178470840399122242580439217280688363196272595495426199210374144226999999967459560999021194634656321926371900489189106938166052850446165066893700705238623763420200062756775057731750664167628412343553382946071965069808575109374623191257277647075751875039155637155610643424536132260038557532223918184328403978 | }}} |
5. 기타
xkcd에서는 파이와 타우 논쟁의 타협점으로 둘의 산술 평균인 [math(1.5\pi)]를 파우(Pau)[2]로 제시했다. 당연히 장난일 뿐이며, 아무런 쓸모가 없는 상수다. #한국어로는 '바퀴'라는 단위가 타우와 비슷한 맥락으로 쓰인다.
이들은 기념일도 3월 14일 대신 6월 28일에 원주율을 기념한다. MIT에서는 새 원주율을 기념해서 합격자 발표를 6시 28분에 한다고 한다.
이 상수는 2017년 Python 3.6에 추가되었다고 한다.
소수점 아래 10만 자리까지 적혀 있는 사이트가 존재한다. #