최근 수정 시각 : 2024-02-26 06:16:49

콕서터 군


[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
이론
기본 대상 연산 · 항등식(가비의 이 · 곱셈 공식(통분 · 약분) · 인수분해) · 부등식(절대부등식) · 방정식(풀이 · (무연근 · 허근 · 비에트의 정리(근과 계수의 관계) · 제곱근(이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술(시계 산술)
수 체계 자연수(소수) · 정수(음수) · 유리수 · 실수(무리수(초월수) · 초실수) · 복소수(허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론 · 분해체
대수 가환대수 · 리 대수 · 불 대수(크로네커 델타)
마그마·반군·모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서(텐서곱) · 벡터 공간(선형사상) · 가군(module) · 내적 공간(그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 층 이론(층들) · 토포스 이론 · 타입 이론
대수기하학 대수다양체 · 스킴 · 사슬 복합체(에탈 코호몰로지) · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론 실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}


1. 개요2. 설명3. 표현론
3.1. 콕서터 행렬과 슐레플리 행렬3.2. 도형의 대칭

1. 개요

Coxeter / Coxeter group

어떤 [math(G)]이 다음을 만족할 때, 그 군을 콕서터 군이라고 한다.

[math(\displaystyle G=\left<r_1,r_2,\cdots,r_n|\left(r_ir_j\right)^{m_{ij}}=e\right>)]
  • [math(e)]는 군 [math(G)]의 항등원이다.
  • [math(\displaystyle m_{ij} = \begin{cases} 1 & \left(\text{if } i = j\right) \\ 2 \le m_{ij}\le \infty & \left(\text{if } i \ne j\right) \end{cases})]

이 때, [math(m_{ij})]를 i행 j열의 원소로 갖는 행렬을 콕서터 행렬이라고 부른다.

2. 설명

예를 들어, 어떤 군 [math(G)]의 원소 중, 특수한 원소 [math(a)], [math(b)], [math(c)]가 있다고 하자. 이 때, 군 [math(G)]의 모든 원소는 [math(a)]와 [math(b)] [math(c)]의 조합으로 나타낼 수 있다.
  • 이 때, 이 특수한 원소들([math(a)], [math(b)], [math(c)])를 콕서터 군 [math(G)]의 '생성자'라고 한다.
  • [math(aa = bb = cc = e)]와 같이 이 특수한 원소들을 제곱하면 항상 항등원이 된다.
  • 또한 [math(ab)], [math(bc)], [math(ca)]와 같이 서로 다른 생성자들 간의 곱이 항상 순환군을 이룰 때, 이 군을 콕서터 군이라고 한다.[1]

[math(\displaystyle \begin{cases} \left(ab\right)^5 = ababababab = e \\ \left(bc\right)^3 = bcbcbc = e \\ \left(ca\right)^2 = caca = e \end{cases})]

3. 표현론

콕서터 군은 행렬이나 기하학적 대칭으로 표현될 수 있다.

유한 콕서터 군은 표현론적으로 다면체의 대칭이 되며, 아핀 또는 쌍곡 콕서터 군은 평면 테셀레이션쌍곡 테셀레이션의 대칭으로 표현된다.

3.1. 콕서터 행렬과 슐레플리 행렬

콕서터 행렬을 [math(\mathbf{M})]이라고 할 때, 콕서터 행렬(coxeter matrix)은 아래와 같이 정의된다.
  • 콕서터 행렬의 원소 [math(M_{ij})]는 [math(\left(r_ir_j\right)^n=e)]를 만족하는 가장 작은 자연수(또는 무한대)다.
    • [math(r_i)]는 대응되는 콕서터 군의 i번째 생성자(generator)
    • [math(e)]는 항등원

이에 대응되는 슐레플리 행렬 [math(\mathbf{C})]의 원소 [math(C_{ij})]는 아래와 같다.

[math(\displaystyle C_{ij} = -2\cos\frac{\pi}{M_{ij}})]

3.2. 도형의 대칭

콕서터 군은 기하학적 대칭, 또는 점군과 관련이 있다.
  • 평면 좌표계의 원점을 ([math(O) = (0,0)])
  • 원점에서 [math(+y)] 방향으로 1만큼 떨어진 한 점을 [math(A = (0,1))]
  • 그리고 [math(\displaystyle \angle AOB = \frac{180\degree}{n})]를 만족하고 ([math(\overline{OB} = 1)]인한 점을 [math(\displaystyle B = \left(\sin{\frac{180\degree}{n}},\cos{\frac{180\degree}{n}}\right))]라고 하자.

그리고 직선 [math(\overleftrightarrow{OA})]와 [math(\overleftrightarrow{OB})]에 대한 대칭을 각각 [math(a)], [math(b)]라고 하자. 그러면 다음이 성립한다.
  • 하나의 직선에 대한 대칭을 또다시 대칭하면 원본과 항상 같으므로, [math(aa = bb =e)]이다.
  • [math(ab)][2]는 점 [math(O)]를 중심으로 시계방향으로 [math(\displaystyle \frac{360\degree}{n})]만큼 회전한 것과 같다. 따라서 [math(\displaystyle \left(ab\right)^n = e)]다.

정n각형은 [math(\displaystyle \frac{360\degree}{n})] 회전하거나, 중심과 꼭짓점을 잇는 선분(또는 중심과 변의 중심을 잇는 선분)에 대해 대칭을 해도 같다. 따라서 정n각형은 위에서 설명된 것과 같은 기하학적 대칭을 가지며, 이와 같은 기하학적 대칭은 콕서터 군으로 표현될 수 있고, 반대로 콕서터 군도 이와 같은 기하학적 대칭으로 표현될 수 있다.
[1] 차수가 유한할 필요는 없다.[2] [math(\overleftrightarrow{OA})]에 대해 대칭한 것을 다시 [math(\overleftrightarrow{OB})]에 대해 대칭한 것

분류