<colkeepall> 분자생물학·생화학 Molecular Biology · Biochemistry | |||||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#717845> 기반 학문 | 생물물리학 · 물리화학 (둘러보기) · 분자화학 (유기화학 · 무기화학 · 고분자화학) · 수학 (미분방정식 · 이산수학 · 매듭이론) | |||||
기본 물질 | 아미노산 (카복실산) · 리간드 | ||||||
유전체 | 유전체 기본 구조 | 아데닌 · 타이민 · 구아닌 · 사이토신 · 유라실 · 리보스 · 디옥시리보스 · 뉴클레오타이드 (핵산) | |||||
유전체 혼합 구성 | 인트론 · 엑손 · 오페론 · 프로모터 · 주조직적합복합체 | ||||||
유전체 세부 종류 | RNA | mRNA · tRNA · rRNA(리보솜) · 리보자임 · miRNA · siRNA · RDDM | |||||
DNA | A형 구조 · B형 구조 · Z형 구조 · Alu · 게놈 · 텔로미어 · 유전자 · 유전자 목록 | ||||||
관련 물질 | 효소 | 보조인자 · 조효소 (NADH · NADPH · FAD) · 뉴클레이스 · 디하이드록실레이스 · 레닌 · 루비스코 · 루시페레이스 · 라이소자임 · 라이페이스 · 말테이스 · 셀룰레이스 · 아데닐산고리화효소 · 아밀레이스(디아스타아제) · 역전사효소 · 트립신 · 펩신 · 유전체 중합 효소 · 리보자임 · 미카엘리스 멘텐 방정식 | |||||
제어 물질 | 사이토카인 · 신경전달물질 (ATP) · 수용체 (GPCR) | ||||||
기타 | 뉴클레오솜 · 히스톤 · 프리온 · 호르몬 · 샤페론 | ||||||
현상 및 응용 | 물질대사 · 펩타이드 결합 (알파 헬릭스 구조 · 베타병풍) · 센트럴 도그마 · 전사 (전사 인자) · 번역 · 복제 · 유전 알고리즘 · 유전 부호 · 대사경로 · TCA 회로 · 산화적 인산화 · 기질 수준 인산화 · 해당과정 · 오탄당 인산경로 · 포도당 신생합성 · 글리코겐 대사 · 아미노산 대사 · 단백질 대사회전 · 지방산 대사 · 베타 산화 · RNA 이어맞추기 · 신호전달 · DNA 메틸화 (인핸서) · 세포분열 (감수분열 · 체세포분열) · 능동수송 · 수동수송 · 페토의 역설 · 하플로그룹 · 분극(흥분 전도) · 감각(시각 · 청각 · 후각 · 미각 · 촉각) | ||||||
기법 | ELISA · PCR · 돌연변이유도 · 전기영동 (SDS-PAGE · 서던 블로팅 · 웨스턴 블롯) · 유전체 편집 (CRISPR) · DNA 수선 · 바이오 컴퓨팅 (DNA 컴퓨터) · DNA 시퀀싱 · STR · SNP · SSCP | ||||||
관련 학문 | 일반생물학 · 생리학 · 유전학 (유전체학 · 분자유전학 · 후성유전학 · 집단유전학) · 진화생물학 · 면역학 · 약학 (약리학 둘러보기) · 세포학 · 구조생물학 · 기초의학 둘러보기 · 신경과학 (뇌과학) · 생명공학 | ||||||
기타 | 식품 관련 정보 · 영양소 · 네른스트 식 · 샤가프의 법칙 · 전구체 · 반수치사량 · 호기성 · 혐기성 · 잔향 |
1. 개요
2. 역할
DNA가 전사되어 mRNA를 합성할 때, 처음 전사 산물(pre-mRNA)에는 인트론과 엑손이 모두 포함되어 있다. 하지만 단백질을 합성하기 위해서는 인트론을 잘라내고 엑손만 남겨서 다시 이어붙여야 하는데, 이를 splicing 이라고 한다.(이미지 참고) 이 과정으로 서로 다른 엑손끼리 이어붙이는 작업이 가능하며, 다양한 단백질을 생성할 수 있게 된다. 즉 인트론은 전사는 되지만 번역은 안 되는 DNA 염기서열이다.전사 후 조절 과정에서 pre-mRNA의 번역을 막을 필요가 있을 때에는 이 인트론이 잘려나가는 splicing을 차단하여 번역을 취소할 수 있다. 인트론이 없어져야 비로소 번역이 일어나기 때문.
한편 이렇게 인트론은 단지 splicing이후 버려지는 것으로 아무런 역할을 하지 않는 유전자라고 알려져 있었으나 최근 연구 논문#에 따르면 효모가 영양이 결핍되는 상태에 놓인다면 인트론이 세포의 신진대사를 조절해 조금 더 세포가 버틸 수 있도록 도와준다는 결과가 제시되었다. 이는 다시금 정크DNA인 인트론이 불필요한 유전자가 아니라는 점을 시사해준다.[3]
3. 기타
인간의 뇌는 10%만 사용된다는 속설이 낭설로 밝혀진 뒤에는 초능력을 다룬 작품의 새로운 소재가 되기도 했다. 98%의 정크 DNA가 사실은 내제된 초능력이 활성화 되지 않은 특수한 유전자였다는 식. 이를 차용한 작품 중 하나로는 커피우유신화가 있다.미번역부위인 UTR과는 다른 개념이다. 인트론은 전사 단계에서 제거되며, UTR은 번역 단계에서 제거되지만 전사 시에는 남아있으므로 엑손이다. 유전자가 번역되어 단백질로 전환될 때 두 부위가 포함되지 않는 점은 공통점이지만, 제거되는 순서의 차이가 있다.
[1] 나머지 1.1-2%는 실제 단백질을 암호화하는 정보를 가진 엑손이다[2] Breathnach, R. and Chambon, P. (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 50, 349–383[3] 물론 모든 인트론이 기능성이 있다는 것은 아니다.