1. 개요
dynamical pictures양자역학의 묘사는 양자 상태를 기술할 수 있는 다양한 수학적인 방법을 뜻한다.
2. 슈뢰딩거 묘사
슈뢰딩거 묘사(Schrödinger picture)는 양자역학을 기술할 때 가장 흔히 사용되는 묘사이다. 슈뢰딩거 묘사에서 파동함수 [math(\left|\Psi(t)\right>)]는 시간에 대한 함수이며, 슈뢰딩거 방정식을 풀어서 구할 수 있다.[math(\displaystyle i \hbar \frac{\partial}{\partial t} \left|\Psi(t)\right>= \hat{\mathcal{H}} \left|\Psi(t)\right> )] |
[math(\displaystyle \left|\Psi(t)\right> = e^{-i \hat{\mathcal{H}} t/\hbar} \left|\Psi(0)\right> )] |
3. 하이젠베르크 묘사
{{{#!wiki style="margin:-12px" | <tablealign=center><tablebordercolor=#ececec,#ccc><tablebgcolor=#ececec,#ccc> | 베르너 하이젠베르크 관련 문서 | }}} |
{{{#!wiki style="margin: 0 -10px -5px; min-height: 28px;" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px; word-break: keep-all;" | <colbgcolor=#000><colcolor=#fff> 연구 업적 | <colcolor=#000,#fff>양자역학(양자역학의 공리 · 코펜하겐 해석 · 행렬역학 · 불확정성 원리 · 하이젠베르크 묘사) | |
프로젝트 | 우란프로옉트 | ||
생애 | 생애 | ||
소속 | 뮌헨 대학교 괴팅겐 대학교 | ||
관련 학자 | 닐스 보어 · 막스 보른 · 알베르트 아인슈타인 · 막스 플랑크 · 아르놀트 조머펠트 | ||
저서 | 부분과 전체 · 물리와 철학 |
슈뢰딩거 묘사에서, [math(\hat{\mathcal{H}})]가 시간에 의존하지 않을 때 어떤 연산자 [math(\hat{A})][1]의 기댓값은 다음과 같이 쓸 수 있다.
[math(\displaystyle \langle \hat{A} \rangle = {\color{blue} \left< \Psi (t) \right|} {\color{red} \hat{A}} {\color{blue} \left| \Psi (t) \right>} = {\color{blue} \left< \Psi (0) \right| e^{i \hat{\mathcal{H}} t/\hbar}} {\color{red} \hat{A}} {\color{blue} e^{-i \hat{\mathcal{H}} t/\hbar} \left|\Psi(0)\right>} )] |
[math(\displaystyle \langle \hat{A} \rangle = {\color{blue} \left< \Psi (0) \right|} {\color{red} e^{i \hat{\mathcal{H}} t/\hbar} \hat{A} e^{-i \hat{\mathcal{H}} t/\hbar}} {\color{blue} \left|\Psi(0)\right>} = {\color{blue} \left< \Psi_H \right|} {\color{red} \hat{A}_H (t)} {\color{blue} \left| \Psi_H \right>} )] |
[math(\displaystyle \begin{aligned} \left| \Psi \right>_H &= \left| \Psi (0) \right>_S\\ \hat{A}_H (t) &= e^{i \hat{\mathcal{H}} t/\hbar} \hat{A}_S e^{-i \hat{\mathcal{H}} t/\hbar} \end{aligned} )] |
[math(\displaystyle \hat{\mathcal{H}}_H = e^{i \hat{\mathcal{H}}_S t/\hbar} \hat{\mathcal{H}}_S e^{-i \hat{\mathcal{H}}_S t/\hbar} = \hat{\mathcal{H}}_S e^{i \hat{\mathcal{H}}_S t/\hbar} e^{-i \hat{\mathcal{H}}_S t/\hbar} = \hat{\mathcal{H}}_S )] |
하이젠베르크 묘사에서는 연산자가 시간에 대한 함수이기 때문에, 방정식을 풀어서 파동함수를 구하는 것이 아니라 연산자 [math(\hat{A}_H (t))]를 구해야 한다. 이때 연산자가 만족하는 방정식은 다음과 같다.
[math(\displaystyle \frac{\mathrm{d} \hat{A}_H (t)}{\mathrm{d} t} = \frac{i}{\hbar}[ \hat{\mathcal{H}}, \hat{A}_H (t) ] + \biggl( \frac{\partial \hat{A}_S}{\partial t} \biggr)_H )] |
4. 관련 문서
[1] peskin을 위시로한 양자장론 교재에서는 [math(\mathcal{O})]라고 쓰기도 한다.