#!if 넘어옴1 != null
''''''{{{#!if 넘어옴2 == null
{{{#!if 넘어옴1[넘어옴1.length - 1] >= 0xAC00 && 넘어옴1[넘어옴1.length - 1] <= 0xD7A3
{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴1[넘어옴1.length - 1] < 0xAC00 || 넘어옴1[넘어옴1.length - 1] > 0xD7A3
은(는)}}}}}}{{{#!if 넘어옴2 != null
, ''''''{{{#!if 넘어옴3 == null
{{{#!if 넘어옴2[넘어옴2.length - 1] >= 0xAC00 && 넘어옴2[넘어옴2.length - 1] <= 0xD7A3
{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴2[넘어옴2.length - 1] < 0xAC00 || 넘어옴2[넘어옴2.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴3 != null
, ''''''{{{#!if 넘어옴4 == null
{{{#!if 넘어옴3[넘어옴3.length - 1] >= 0xAC00 && 넘어옴3[넘어옴3.length - 1] <= 0xD7A3
{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴3[넘어옴3.length - 1] < 0xAC00 || 넘어옴3[넘어옴3.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴4 != null
, ''''''{{{#!if 넘어옴5 == null
{{{#!if 넘어옴4[넘어옴4.length - 1] >= 0xAC00 && 넘어옴4[넘어옴4.length - 1] <= 0xD7A3
{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴4[넘어옴4.length - 1] < 0xAC00 || 넘어옴4[넘어옴4.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴5 != null
, ''''''{{{#!if 넘어옴6 == null
{{{#!if 넘어옴5[넘어옴5.length - 1] >= 0xAC00 && 넘어옴5[넘어옴5.length - 1] <= 0xD7A3
{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴5[넘어옴5.length - 1] < 0xAC00 || 넘어옴5[넘어옴5.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴6 != null
, ''''''{{{#!if 넘어옴7 == null
{{{#!if 넘어옴6[넘어옴6.length - 1] >= 0xAC00 && 넘어옴6[넘어옴6.length - 1] <= 0xD7A3
{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴6[넘어옴6.length - 1] < 0xAC00 || 넘어옴6[넘어옴6.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴7 != null
, ''''''{{{#!if 넘어옴8 == null
{{{#!if 넘어옴7[넘어옴7.length - 1] >= 0xAC00 && 넘어옴7[넘어옴7.length - 1] <= 0xD7A3
{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴7[넘어옴7.length - 1] < 0xAC00 || 넘어옴7[넘어옴7.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴8 != null
, ''''''{{{#!if 넘어옴9 == null
{{{#!if 넘어옴8[넘어옴8.length - 1] >= 0xAC00 && 넘어옴8[넘어옴8.length - 1] <= 0xD7A3
{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴8[넘어옴8.length - 1] < 0xAC00 || 넘어옴8[넘어옴8.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴9 != null
, ''''''{{{#!if 넘어옴10 == null
{{{#!if 넘어옴9[넘어옴9.length - 1] >= 0xAC00 && 넘어옴9[넘어옴9.length - 1] <= 0xD7A3
{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴9[넘어옴9.length - 1] < 0xAC00 || 넘어옴9[넘어옴9.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴10 != null
, ''''''{{{#!if 넘어옴10[넘어옴10.length - 1] >= 0xAC00 && 넘어옴10[넘어옴10.length - 1] <= 0xD7A3
{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴10[넘어옴10.length - 1] < 0xAC00 || 넘어옴10[넘어옴10.length - 1] > 0xD7A3
은(는)}}}}}} 여기로 연결됩니다. #!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 대한민국 과학고등학교 및 영재학교의 교과}}}에 대한 내용은 [[통계학]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[통계학#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[통계학#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.#!if 리스트 != null
{{{#!if 문서명1 != null
* {{{#!if 설명1 != null
대한민국 과학고등학교 및 영재학교의 교과: }}}[[통계학]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[통계학#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[통계학#|]] 부분}}}}}}{{{#!if 문서명2 != null
* {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
* {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
* {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
* {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
* {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
* {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
* {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
* {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
* {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}| | |||||
| 대수학Ⅰ | 대수학Ⅱ | → | Precalculus | → | AP 미적분학 (AB, BC) |
| 기하학 | AP 통계학 | ||||
| ※ SAT, ACT의 수학 영역은 대수학Ⅰ, 대수학Ⅱ, 기하학을 기반으로 출제된다. ※ AP를 제외한 미국의 교육과정은 국가적으로 통일되어 있지 않으며, 같은 주 내에서도 학교에 따라 다르다. 이 틀의 과목명은 가장 보편적인 구분을 따른 것. 다만 2012년 이후로는 대부분 주에서 Common Core가 도입되어 학년별로 배우는 내용이 통일되어 가고 있다. | |||||
| | ||
| {{{#!wiki style="margin: 0 -10px -5px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="text-align: left; margin: -6px -1px -11px" | <colbgcolor=#A1C761> 형식과학 | Precalculus · 미적분학(AB · BC) · 통계학 · 컴퓨터과학(기본 · A) |
| 자연과학 | 물리학(1 · 2 · C: 역학 · C: 전자기학) · 화학 · 생물학 · 환경과학 | |
| 인문·사회과학 | 미국정부정치학 · 비교정부정치학 · 미시경제학 · 거시경제학 · 미국사 · 유럽사 · 세계사 · 인문지리학 · 심리학 | |
| 언어·문학 | 영어학 · 영문학 · 스페인어와 문화 · 스페인문학 · 프랑스어와 문화 · 독일어와 문화 · 이탈리아어와 문화 · 중국어와 문화 · 일본어와 문화 · 라틴어 | |
| 예술 | 미술사 · 스튜디오 미술(드로잉 · 2D 디자인 · 3D 디자인) · 음악이론 | |
| 캡스톤 | 세미나 · 리서치 |
1. 개요
AP StatisticsAP 통계학은 미국의 칼리지 보드에서 주관하는 고등학교 통계학 교육과정 및 표준화 시험으로, Advanced Placement 과목 중 하나다. 보통 Precalculus를 이수한 뒤에 이수하거나 응시하며, 한국어로는 앱통 혹은 스탯이라고도 한다.
2. 상세
한국 고등학교의 확률과 통계 시험과는 달리 계산기를 사용할 수 있기 때문에, 통계학의 특성상 계산기의 사용이 능숙하지 못하면 당혹스러울 수 있는 시험이다.시험을 위한 formula sheet가 주어지긴 하지만, 대부분의 시험과 같이 공식을 외워두는 게 훨씬 이득이다.[1] 때문에 시험을 보기 위해선 암기해야 할 공식과 개념 등이 다소 있는 편이나, 절대 불가능한 수준은 아니다.
내용 상으로는 한국의 확률과 통계에 비해 더 수준이 높다. 경우의 수 부분은 없기는 하지만[2] 한국에서 추정만 다루는 것에 비해 AP Statistics는 가설 검정을 깊게 다루며 상관계수, 선형회귀, 잔차, 기각역, 독립성 검정, 동질성 검정, 스튜던트 t-분포, 카이제곱 분포 등을 다룬다.
이는 대학교 1학년 과정에서 배우는 통계학과 엇비슷한 수준. 시험의 난이도 자체는 평이하거나 약간 어려운 수준이지만, 5점의 커트라인이 비교적 낮은 편에 속하기 때문에 꽤 많은 이과생들이 도전하는 과목이다.
하지만 이와는 별개로 한국인, 혹은 영어가 능숙하지 못한 학생들에게 FRQ는 결코 만만치 않다. 안 그래도 헷갈리는 통계학 용어를 영어로 이해하고 작성하는 것은 물론, 실험을 설계할 때 작성해야 하는 멘트[3]를 외워야 수월하게 답안을 작성할 수 있는 문제들도 자주 나오기 때문에, 기본적인 영어 실력이 부족하면 답안 작성에 애로사항이 많이 생긴다.
3. 구성
3.1. 과목 구성
- Unit 1: Exploring One-Variable Data
변수 하나에 대한 통계 그래프의 종류와 이를 해석하는 단원이다. 줄기와 잎 그림, 막대그래프, 상자 수염 그림 등을 보고 평균, 최댓값, 최솟값, 범위 등 여러 가지 통계학적 정보를 알아낼 수 있는 수준을 요구한다. 또한, FRQ에서 주어진 자료를 바탕으로 그래프를 직접 그려서 완성하는 문제가 출제될 수 있으니 그래프를 그리는 과정도 확실히 이해하고 있는 것이 좋다.[4] 난이도가 비교적 낮은 편이면서도 시험의 약 15~23%를 차지하니, 중요한 개념은 확실히 짚고 넘어가는 것이 중요하다.
- Unit 2: Exploring Two-Variable Data
두 변수에 대한 상관관계에 대한 회귀 분석을 다루는 단원이다. 상관계수, 결정계수, 잔차 등의 개념을 포함한다. 시험의 약 5~7%를 차지하며, 보통 MCQ에서 2~3문항 정도 출제된다. 하지만 비중이 적다고 절대 무시하면 안 되는 것이, 아예 FRQ의 한 문제로 출제될 수 있으므로 절대 소홀히 해서는 안 된다. 통계학 용어와 기호만 잘 숙지하고 있다면 절대 어렵지 않은 단원이다.
- Unit 3: Collecting Data
통계학적 연구에 대한 이해와 이를 설계하고, 타당성을 평가하는 방법을 다루는 단원이다. 특정 연구에서의 적절한 모집단을 파악하고 랜덤 표집을 통해 편향되지 않은 표본을 선정할 수 있어야 하며, 관찰법과 실험의 차이점을 명확히 이해해야 한다. 시험의 약 12~15%를 차지하며, FRQ에서는 거의 매번 출제되는 편이다. 아래는 2023년 AP 통계학 FRQ 2번 문항이다.
- Unit 4: Probability, Random Variables, and Probability Distributions
- Unit 5: Sampling Distributions
- Unit 6: Inference for Categorical Data: Proportions
- Unit 7: Inference for Quantitative Data: Means
- Unit 8: Inference for Categorical Data: Chi-Square
- Unit 9: Inference for Quantitative Data: Slopes
3.2. Section 1: MCQ
총 40문항으로 구성되어 있으며, 90분의 시간이 주어진다.3.3. Section 2: FRQ
Part A와 Part B로 구성되어 있으며, 각각 5문제와 하나의 조사 과제 문항으로 구성된다. 마찬가지로 90분의 시간이 주어진다. 각 문제는 4점 만점으로 체점되며 Part B (조사 과제 문항)은 FRQ 전체의 25%를 차지한다.4. 둘러보기
| 통계학 Statistics | |||
| {{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-5px -1px -11px" | <colbgcolor=#4d4d4d><colcolor=#fff> 수리통계학 | 기반 | 실해석학 (측도론) · 선형대수학 · 이산수학 |
| 확률론 | 사건 · 가능성 · 확률 변수 · 확률 분포 (표본 분포 · 정규 분포 · 이항 분포 · 푸아송 분포 · 카이제곱분포 · t분포 · Z분포 · F-분포 · 결합확률분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙 (무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙 · 독립항등분포 | ||
| 통계량 | 평균 (제곱평균제곱근 · 산술 평균 · 기하 평균 · 조화 평균 · 멱평균 · 대수 평균) · 기댓값 · 편차 (절대 편차 · 표준 편차) · 분산 (공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도 | ||
| 추론통계학 | 가설 · 변인 · 추정량 · 점추정 · 신뢰 구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 (심슨의 역설) · 그레인저 인과관계 · 신뢰도와 타당도 · 오차 · 잔차 · 편향(확증 편향 · 선택 편향) | ||
| 통계적 방법 | 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석 (요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습 (군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타 분석 · 모델링 (구조방정식) | ||
| 기술통계학 · 자료 시각화 | 도표 (그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 | }}}}}}}}} | |