최근 수정 시각 : 2020-03-14 12:28:07

철근 콘크리트

파일:나무위키+유도.png   마츠모토 타이요의 만화에 대한 내용은 철콘 근크리트 문서를 참조하십시오.
파일:attachment/철근 콘크리트/reinforced_concrete.jpg
[1]
1. 개요2. 상세
2.1. 역사2.2. 재료의 특징
2.2.1. 강도2.2.2. 재료의 특성
2.2.2.1. 균열2.2.2.2. 지진 및 붕괴2.2.2.3. 수명
2.3. 주거시 특징
2.3.1. 단열2.3.2. 습기와 결로2.3.3. 층간 소음
2.4. 시공시 특징2.5. 철근 콘크리트 구조의 종류2.6. 현황
2.6.1. 시공2.6.2. 교육
3. 속설4. 기타

Reinforced Concrete

1. 개요

건축 자재의 일종. 콘크리트 안에 철근을 넣어 콘크리트의 단점인 부족한 인장강도(잡아당기는 힘에 버티는 강도)를 보완한 복합자재다. 두가지 재료를 함께 사용하기 때문에 서로의 장점은 살리되 단점은 보완할 수 있다. 건설 현장에서나 서류 등에는 줄여서 철콘이라고 쓰이는 경우가 많다.

콘크리트와 철근을 같이 쓸 수 있는 첫번째 이유는 철근과 콘크리트의 열팽창계수가 우연히도 거의 동일하기 때문이다.[2] 두번째로 콘크리트가 철근을 감싸는 형태로 시공되므로 부식에 취약한 철근에 공기가 접촉하는 것을 막아주고, 타설당시 콘크리트는 수분을 잔뜩 머금고 있지만 알칼리성 물질이라 철근의 부식을 막아준다.

영어로는 'Reinforced Concrete'. 여기서 철근을 Reinforcement, Reinforcement bar 혹은 Re-bar라고 칭한다. 직역하면 보강된 콘크리트지만 의미상으로는 철근 콘크리트라 부르는 것이 맞다. 철근 이외에 다른 재료를 쓸 경우, Polymer concrete, Cementitious composite 등으로 혼합되는 재료나 발현되는 재료적 특성에 따라 명칭이 달라진다.

건축, 토목 분야에서 사용하며 철근 콘크리트의 타설 후 중량은 1입방미터당 2.5톤 가량으로 무겁고[3], 물이 사용되는 습식재료이므로 시공기간도 오래 걸려서 당연하게도 주로 일정 크기 이상의 건축물에 사용된다. 현재 1~2층 규모 타운하우스 등의 단독주택의 경우, 기초만 철근 콘크리트로 다지고 그 위는 시공기간이 단축되는 경량목구조로 만들어지는 추세다. 3~5층 규모의 상가건물은 기초는 철근 콘크리트로 다지고 지상층은 철골구조로 만들어지는 경우가 많다. 특별히 문제가 없다면 철근 콘크리트 구조물의 수명은 일반적으로 50~200년 정도로 길다. 단, 부실시공일 때는 제외다.[4]

밑의 설명은 이해를 위해서 기초적인 화학물리지식을 요구하기 때문에 기본 화학 정보를 어느 정도 숙지하고 읽는 것이 좋다.

2. 상세

2.1. 역사[5]

콘크리트는 기원전부터 고대 이집트인과 고대 로마인들이 발견하여 사용했던 재료다. 화산재 퇴적물의 일종인 응회암의 분말과 석회, 모래에 섞어서 굳힐 경우 강한 모르타르(Mortar)가 된다는 것을 알아내어 많은 건축물에 사용하였다.[6] 이를 사용한 가장 유명한 건축물은 현재까지도 남아있는 기원 후 126년 완성된 로마의 판테온 신전이다. 현대의 콘크리트에 비하면 원시적 방법으로 만들어진 천연 콘크리트를 이용해 무려 43.3m의 을 만들어 냈다.[7] 또한 고대 로마 제국 팽창에 따라 로마 이외에도 이집트나 그리스 등지에서도 사용되었다.그 당시에 석재와 더불어 콘크리트를 이용해서 건축했다면 악마의 다리라고 불릴만 하다.

근세에 들어 영국에서 시멘트에 대한 연구가 활발히 이루어졌고, 1824년 벽돌공 조셉 아스피딘(J. Aspidin)이 분말로 분쇄된 석회석점토를 섞어 가마에서 소성하는 시멘트 제조법을 발견하였다. 이렇게 만들어진 시멘트는 영국 남부 포틀랜드 지방에서 산출되는 회백색 석회석과 비슷하여 포틀랜드 시멘트(Portland Cement)라 이름붙여졌고 현재에도 그대로 불려지고 있다. 강재가 보강된 콘크리트가 1832년 영국의 이삼바드 킹덤 브루넬에 의해 런던의 템즈강 터널공사에 처음으로 사용되었다는 기록이 있다. 다만 현재의 철근 콘크리트와는 커다란 차이가 있다.

이에 힘입어 콘크리트의 취약점인 인장강도 보강에 대한 연구가 1850년대 이후로 많이 진행되었다. 1854-1855년 윌킨슨(W.B. Wilkinson)의 철근 콘크리트 바닥판 특허, 1848년 발명, 1855년 특허를 받은 프랑스의 랑보(J.L. Lambot)가 만든 철망 보강 콘크리트 보트 등이 이 시대의 결과물이다.

파일:agi-architects-presentation-about-design-and-innovation-in-the-arab-countries-7-638.jpg
1853년에는 프랑스의 사업가 프랑수아 쿠아네(François Coignet)가 파리시의 외곽에 세계 최초로 철근 콘크리트 건물을 짓기도 했다. 물론 이때 철근은 콘크리트를 더 튼튼하게 보강하려는 목적보다는, 마치 소조처럼 단지 철근뼈대에 콘크리트 덩어리를 덧붙여 잡아줄 목적으로 사용한 것이었다.

가장 괄목할만한 연구는 프랑스의 정원사(!) 모니에(J. Monier)에 의해 이루어졌는데 콘크리트로 만든 화분이 작은 충격에도 자꾸 깨지는 것 때문에 내부에 철망을 두른 콘크리트 화분을 만들었다. 이를 1854년 제2회이지만 제1회라고 주장하는 파리 만국박람회에 출품하였고 1855년에 특허받았다. 모니에는 1875년까지 철근 콘크리트를 이용한 파이프, 수조, 판, 교량, 계단 등에 대해서도 특허를 받았다. 그리고 코아니에(Coignet)는 보와 아치의 건설에 대한 보강 콘크리트의 원리를 1861년 책으로 출판하였다. 이러한 성과는 독일에 전수되어 프로이센 건축감독관인 쾨넨(M. Koenen)이 철근 콘크리트의 보 단면 해석법을 개발하여 1886년 논문으로 발표하였다. 미국의 하얏트(Hyatt)는 1878년 논문에서 철근 콘크리트 설계의 기본 원리를 밝혔다.[8] 이후 1900년대 초반에 이르기까지 많은 특허와 연구가 이루어졌고 1920년대 이후에 본격적으로 건설업에 적용되어졌다.

한국에서는 1910년대부터 철근 콘크리트 건물이 지어지기 시작했다. 한국 최초의 철근 콘크리트 건물은 1910년 11월 준공된 부산세관 본청사[9]이다. 철근 콘크리트로 구조를 잡고 러시아산 붉은 벽돌로 외부 마감한 건물이었다. 1912년 1월 준공된 한국은행 본점은 현재까지 남아 사적 280호로 지정되어 보존되고 있다. 이후 1925년 준공된 서울역 건물, 1926년 준공된 서울시 청사 및 조선총독부 청사[10] 등이 있다.

한국 건축가가 설계한 건물로는 건축가 박동진이 설계한 1934년 준공된 고려대학교 본관건물(사적 제285호), 1937년 준공된 똑같이 생긴 중앙고등학교 본관건물(사적 제281호), 건축가 박길룡이 설계한 1937년 준공된 화신백화점 등이 대표적인 건물이다. 1938년 건립된 반도호텔은 지하 1층, 지상 8층[11]에 연면적 18,300㎡, 1960년대에 이르기까지 한국에서 가장 높은 건물이었다.[12]

2.2. 재료의 특징

2.2.1. 강도

일반적인 콘크리트는 부재가 하중을 받아 눌리는 압축에는 매우 잘 견딘다. 옆 방향으로 압축을 가해도 압축 변형률 한계를 넘어 부서질 때까지 전체가 압축에 잘 저항한다. 하지만 반대로 인장, 그러니까 부재가 당겨질 때에는 잘 견디지 못한다. 일반적으로 콘크리트의 인장강도는 압축강도의 1/9에서 1/13 정도다. 구체적으로 콘크리트는 자갈(굵은 골재), 모래, 알갱이(가는 골재) 등이 시멘트, 등과 화학적 결합 없이 단지 섞이어 접착되어 있는 혼합물이기 때문에 압축을 받을 때는 서로 맞물리어 잡아주면서 잘 견디지만, 인장이 가해지면 서로 간의 접착이 떨어지면서 분해되어 균열이 생기고 잘 견디지 못한다.

이러한 이유로 콘크리트의 강도를 실험할 때는 주로 압축강도만 측정하고 인장강도는 잘 측정하지 않는다. 발현되는 인장강도가 매우 적어 실험 할 수 있는 실험물체를 제작하기도 어렵고, 만약에 만들어도 제대로 된 측정결과를 얻기 힘들기 때문이다. 따라서 직접 인장강도가 아닌 쪼갬(할렬) 인장강도를 측정하는데 원주형(원기둥) 콘크리트 공시체를 옆으로 뉘여서 길이가 긴 방향으로 압축력을 가하고 공시체가 반으로 쪼개질 때의 강도를 인장강도로 간주한다. 다만, 설계에서는 콘크리트는 압축응력만 고려하고, 모든 인장응력을 철근이 부담하는 것으로 가정한다.[13] 균열 발생 전까지 콘크리트도 약간의 휨인장강도(파괴계수)를 보이지만 앞서 말한대로 휨압축강도에 비해 현저히 낮고[14] 이걸 굳이 계산하기도 번거로워서 설계에서 고려하지 않는다. 때문에 더 안전하게 설계되도록 유도한다.[15] 그리고 전단이나 비틀림 해석때에는 인장강도를 고려해야 하지만, 앞서 이야기 했듯이 실험이 어려워서 압축강도를 통해 인장강도를 예상하는 실험을 한다.

실제로 건축공학과나 토목공학과에서 쓰는 교재 중에는 콘크리트의 응력-변형률 그래프를 그릴 때 일반적인 재료에 대한 그래프처럼 인장에 대한 변형률과 응력을 양(+)의 부호로 두지 않고 반대로 압축에 대한 변형률과 응력을 양의 부호로 놓고 압축에 대한 응력-변형률 그래프만 고려한다. 쉽게 말해 인장을 아예 고려하지 않는단 이야기다. 인장에 대한 저항이 거의 없는 콘크리트를 가지고 일반 재료처럼 인장이 일어나는 방향을 양의 부호로 하여 콘크리트의 강도 그래프를 그리면 제 3사분면에만 그래프가 그려지기 때문이다.

반면 철근은 인장과 압축을 둘 다 잘 견딘다. 콘크리트는 단순히 여러재료의 혼합물이지만, 은 그보다 작은 여러가지의 원자들이 화학적으로 결합한 금속이다. 압축이 가해질 경우 각 원자가 전자기력에 의해 서로 밀어내면서 저항하고 인장력이 작용할 경우 인력으로 입자들끼리 잡아당기면서 저항한다. 응력-변형률 곡선을 보면 항복변형률에 도달한 이후 소성구간에 들어서서도 콘크리트에 비해 굉장히 큰 변형률까지 견디면서 이내 응력이 약간 증가하다가 파단(破斷:재료가 분리되어 나뉘어짐)된다.[16] 현재 설계법에서는 인장측 철근이 탄성구간을 거쳐서 항복변형률을 넘어 소성구간에서 응력을 부담하도록 유도한다. 이는 후술할 연성파괴 유도 설계의 발현방법이기도 하다. 콘크리트는 크게보면 인장의 일종인 전단에 취약하지만, 철근은 전단력에 매우 잘 저항하며 현행 설계법에서는 전단파괴 방지를 위한 철근이 받을 수 있는 전단력을 그 단면에서 콘크리트가 받는 전단력의 네 배까지 허용하고 있다.(콘크리트 전단강도 간편식에 4배를 곱하기 때문에 식의 맨 앞쪽 계수가 2/3이다.)

결과적으로 콘크리트를 철근으로 보강하여 철근 콘크리트를 만들면, 압축에 매우 잘 견디는 콘크리트의 강점을 살리고 약점인 인장과 전단에 대한 저항을 철근으로 보강할 수 있다.

2.2.2. 재료의 특성

"철근은 압축에 약하고 인장에 강하며, 콘크리트는 압축에 강하고 인장에 약해서 철근콘크리트는 환상의 조합이다." 라는 말이 많다. 일단 콘크리트가 압축에 잘 저항하기는 하지만, 철근은 그 콘크리트보다 압축강도가 10배 이상 높다.[17]

그러나 그래서 철근이 실제로 압축에 강하다고 단언할 수는 없다. 예를 들어, 압축을 많이 받는 기둥을 철재로 만들 때, 철근의 압축강도가 콘크리트 보다 10배 높다는 점을 그대로 적용해서 콘크리트보다 10분의 1의 둘레로 만들면 많은 문제가 발생한다. 일단 부재가 가늘어지면 위에서 가해지는 축방향 압축에 의해 기둥이 옆으로 휘어지는 좌굴(buckling)이 발생하기 쉽고 이는 강도 저하로 직결된다. 이를 보완하려고 기둥의 둘레이자 두께인 단면적(정확히는 단면2차 모멘트)을 늘리면 일단 그 부재의 가격부터 시작해서 공장에서 만들기 어려운 것은 둘째치고, 현장으로의 운반은 물론이고, 시공 시에 고력볼트나 용접으로 붙이기도 심히 곤란해진다.책에만 존재하는 꿈의 기술인 메탈터치 드립은 가볍게 무시하자. 때문에 철골구조로 설계되는 건물은 층수가 제약되거나 이를 보완하려고 코어 부분에 기둥에 실리는 압축력을 분담하도록 두꺼운 전단벽을 철근 콘크리트로 시공하여 층수를 늘리는 것이다. 또한 건축이나 토목 모두에서 마찬가지로 건축물 혹은 다리 등과 같은 구조물에서 가늘고 긴 압축재로 철재'만'을 사용하는 것은 기피사항이다. 한강철교와 같은 철제 트러스로 된 다리도 당연히 설계시부터 의도적이지만, 트러스 해석해보면 경사재는 인장력만을 부담하도록 설계되어 있다. 부득이한 압축재는 길이를 짧게 하고 단면을 두껍게 설계한다.

물론 철은 일단 모든 면에서 콘크리트를 훨씬 상회하는 강도를 지니므로, 굳이 경제적 불이익을 감당하면서 시간과 돈을 무제한적으로 쓰면, 훨씬 적은 단면적으로 강재만을 이용해 시공할 수 있다. 그러나 그렇게 할 경우, 콘크리트를 같이 쓰는 것에 비해 예산이 몇배나 들 수도 있고, 돈도 돈이지만 그만큼 시간도 많이걸리고, 공정도 복잡해지고 힘들어지니 결국 현실적인 문제와 효율을 생각하여 콘크리트를 안 쓸래야 안 쓸 수가 없다.

압축과는 반대로 철근의 인장강도는 콘크리트 인장강도의 100배를 훌쩍 뛰어넘고, 게다가 재료파괴도 연성파괴를 나타내고 재료의 역학적 거동도 변형률 경화(Strain Hardening) 형태를 보여 이상적인 거동과 잘 부합한다. 한 마디로 철근은 인장재로 사용하기에 이상적인 재료이다. 콘크리트와 같이 사용할 경우, 얇은 철근을 사용할 수 있어서 원하는 모양 만들기도 쉽고 콘크리트는 철근보다 단면적이 넓으므로 철근의 약점인 횡력에도 잘 저항하고 더불어 압축력이 가해질 때 철근에 발생하는 좌굴을 콘크리트를 통해 보완할 수 있다.

결국 철근 콘크리트는 인장과 압축에 둘다 강하며 횡방향 외력에도 강하다. 여기에 더해서 철근을 구성하는 철 성분의 산화로 인한 부식을 강한 염기성인 콘크리트가 방지해주고 공기와의 접촉을 차단하여 장기간의 강도 유지도 가능하다. 더구나 철근과 콘크리트의 열에 의한 팽창률이 거의 같기 때문에 뜨거운 여름 혹은 겨울에 철근과 콘크리트가 서로 다른 열 팽창률에 의해 분리되고 내부부터 붕괴되는 대참사가 벌어지지 않는다.[18]
2.2.2.1. 균열
어떤 물체든지 기본적인 성질로서 탄성소성을 가지고 있다. 탄성이란 물체가 외부에 의해서 변형된 뒤 외부의 힘이 없어지면 원래 모양으로 돌아오려는 성질. 소성은 물체가 외부에 의해서 변형되었을 때 그 힘이 없어져도 변형된 모양 그대로 남아 있는 성질이다. 완벽하게 금이 안 간 철근 콘크리트는 이상적인 소성의 성질(=탄성 0%)을 가진 취성 재료라고 가정하는데 이런 재료는 공학적으로 매우 위험하다.

일반적으로 소성인 물체는 탄성인 물체에 비해서 한계강도가 크나 한계강도까지 힘이 가해져 부서지기 직전까지 어떤 변화도 없기 때문에 위험을 예측하기 어렵다. 쉽게 말해 일정수준까지는 잘 부서지지 않지만, 한 번 부서지게 되면 갑자기 박살나서, 가만히 있다가 어느 날 갑자기 속된 말로 훅 가버린다. 이른바 취성파괴

건물을 지을 때 무작정 철근을 많이 넣거나 콘크리트만 넣을 수 없는 게 철근과 콘크리트의 비율이 어긋나면 건물이 폭삭! 하고 순식간에 무너질 수 있기 때문이다. 콘크리트만 넣으면, 앞서 이야기했덧이 취성파괴가 일어나 갑자기 무너질 수 있고, 반대로 철근의 양을 늘리면, 철근만 무사한 가운데 콘크리트 피복만 갑자기 박살날 수 있다. 그래서 보통 설계기준에서는 콘크리트가 취성파괴 되기 전에 철근이 먼저 항복하고 최외단 인장 변형률이 계속 주욱 늘어나고[19] 천천히 처짐과 균열이 발생함으로써 거주자에게 위험을 알리는 역할과 대피시간을 벌어준다. 이를 연성파괴 유도 설계라고 부르며, 이러한 이유로 설계기준에서는 부재에 넣을 수 있는 최대 철근의 양을 제한하고 있다. 또한 휨강도의 경우 일반적으로 강도감소계수[20]로 1보다 낮은 값을 사용하고 한다. 취성파괴 될 가능성이 높은 단면은 강도감소계수를 더욱 낮추어 사용한다.

철근 콘크리트의 표면에 미세한 균열(0.1mm~0.3mm 크기)이 어느 정도 있는 경우라도 아직 전체적으로는 재료가 탄성의 영역에 있다는 증거니 너무 걱정하지 말자. 콘크리트는 그 특성상 균열이 발생할 수 밖에 없는 재료이다. 포함된 수분이 마르거나 혹은 자중에 의해 침하되거나 하는 등 표면에 필연적으로 균열이 발생한다. 잔금의 변화가 계속 심해지면 문제가 커지지만 잔금이 있되 변화가 심하지 않다면 괜찮다. 물론 균열에 손가락이 들어갈 정도로 크다든지 너무 많다거나, 내부의 철근이 노출된 경우면 꽤 심각한 문제다. 다만 하중을 받는 구조체가 아니라 하중을 받지 않고 공간만 나누는 용도로 만든 비내력벽 등은 보수만 하면 된다.

그러나 기둥에 보이는 가로방향의 균열, 슬래브를 지지 하는 보의 양쪽 단부에 보이는 45도 방향의 균열은 심각한 균열이다. 일반적으로 철근 콘크리트 기둥에서 보이는 균열은 세로방향 균열인데 이러한 균열은 시간에 따른 수축이나 하중 재하 과정(포와송 비에 따른 축방향 압축으로 생긴 직각 방향 인장변형)에서 나타나는 일반적인 균열이다. 이미 생길 것을 설계상 염두에 둔 것으로 특별히 문제는 없다. 하지만 기둥에 가로방향 균열이 보일 경우 그 즉시 대피하여야 한다. 이는 콘크리트 압축에 따른 압축파괴로서 붕괴의 징조이다. 이와 더불어 천장 마감재 때문에 발견하기 쉽지 않지만, 기둥과의 연결부 부분(흔히 위험단면이라 부르는 부분)의 보에 기둥방향의 아래쪽으로 나타나는 45도 방향의 균열을 사인장균열이라 하고, 이 또한 붕괴의 징조이므로 바로 대피하여야 한다.보가 '나 죽었다' 라고 하는 의미이다. 이 상태면 연성파괴고 뭐고 없이 그냥 내려 앉는다.

그 밖에도 콘크리트는 그 재료적 특성 때문에 예측이 불가능한 움직임을 보이는 경우가 많다. 예를 들면 콘크리트에 일정 하중을 계속 주면 시간이 경과함에 따라 하중의 증가가 없어도 변형이 증가하는 소성변형 현상인 Creep[21]과 콘크리트가 굳을 때 필요한 수분(이를 수화작용이라 한다.)을 제외하고 나머지(이를 자유수라 한다.)는 공기 중으로 증발 할 때 일어나는 건조수축 현상[22] 등이 있다. 재료가 불균질한 것도 그 이유에 한 몫을 한다. 기본적으로 소성설계법을 이용하지 못하고 콘크리트의 비이상적 거동을 고려하는 강도설계법을 따로 개발하여 적용하는 가장 큰 이유다. 그렇기 때문에 콘크리트에 금이 가는 것은 결코 막을 수 없으며 단지 수 많은 실험을 통해 균열의 폭과 깊이를 통제하거나 단면을 줄여 균열부위를 제어할 뿐이다.
2.2.2.2. 지진 및 붕괴
지진 등의 천재지변에 약한 것으로 잘못 알려져있는데, 고베대지진과 같은 천재지변 사건 당시에는 아파트와 같은 고층 건물을 제외한 비교적 층수가 낮은 철근 콘크리트 건물은 꽤 많은 수가 원형을 보존하여 별다른 피해 없이 보존되었다. 당시에는 되려 전통 목조주택의 붕괴 및 압사피해가 압도적으로 많았다. 또한 파괴된 건물도 목조처럼 폭삭 무너진 것이 아니라 피복이 박리되거나 압괴로 기둥이 터지긴 했어도 어느정도 건물 형태는 유지하였기에 안전하게 대피할 수 있었거나 구조될 수 있었다. 비슷한 사례는 폭탄 사례를 받았던 지역의 건축물에서도 찾을 수 있다. 폭탄의 폭압과 운동 에너지로 신호등, 건축물의 유리창과 다른 시설물은 박살나는 상황에서도 철근 콘크리트 골조 자체는 무너지지 않고 버티고 있는 광경을 볼 수 있다.

다만 지진이 빈번한 일본의 경우, 우리나라와 반대로 건물이 지어진지 오래될수록 그 건물의 가치가 급격하게 떨어진다. 많은 지진을 겪은 건물은 그만큼 지진에 의한 구조물의 피로도가 올라가서 약한 지진으로도 쉽게 붕괴될 위험이 크기 때문이다. 이렇게 건물의 내구연한과 재건축 주기가 짧기 때문에, 상대적으로 비싸며 시공도 오래 걸리는 철근 콘크리트 구조보다 쉽게 철거하고 값싸고 빠르게 다시 지을 수 있고 내진설계 적용도 쉬운 경량목구조에 대한 선호가 높다.[23]

화장실과 같이 배관이 들어가는 벽이라고 딱히 강도가 떨어지진 않고 오히려 설계할 때 일반 벽보다 더욱 두껍게 설계하는 편이다.(물론 배관 부피만큼 강도는 감소하지만) 지진이 많은 일본에서는 건물을 지을때 되도록 목조를 많이 이용하고(유연하면 흔들림에도 무너지지 않기 위해서) 대신 화장실을 제일 튼튼히 짓는다고 한다.(일단 화장실에는 물이 있다! 큰 지진이 날 것 같으면 화장실로 대피하는 게 기본이라고) 또한 콘크리트로 지은 아파트(맨션)의 경우도 기둥 구조를 많이 쓴다는 것도 알아두면 좋다. 주로 건물의 코어 부분에 화장실을 위한 배관이나 계단 등 대피로가 위치하고 그곳에 횡력 부담을 위해 전단벽을 두껍게 설치하는 경우가 많은 것도 동일한 맥락이다. 경제적이기도 하고 최근에는 아예 설계 단계부터 이런 점을 반영하여 "재난시 화장실 대피공간 활용 기술"을 주요 건축기술 개발과제로 삼고 있기도 하다.[24]

우리나라의 대표적 붕괴 건축물인 삼풍백화점이 설계될 당시에는 연성파괴를 의도하고 설계하는 개념이 없었지만[25] 설계 변경시 임의적으로 철근을 많이 뺐는지 다행하게도 붕괴 초기에 점진적으로 처짐과 균열이 발생하는 연성파괴 거동을 보였다. 때문에 이 시기에 바로 대피시켰다면 희생자가 없거나 적었을테지만 이걸 알고 있는 관련자들은 이미 다 챙겨서 도망간 후에도 영업을 계속하였다. 결국 시간이 지나 철근이 더 이상 버티지 못하며 최상층 슬래브가 휨인장파괴로 내려 앉고, 그 충격으로 하부 층 슬래브의 뚫림전단 파괴(Punching Shear Failure)가 발생하며 바닥이 그대로 내려 앉으며 붕괴되었다. 다른 파괴거동에 비해 굉장히 치명적인 파괴인 것이 건물 내부에 남는 공간이 없어져서 매몰자 중 사망자 비율이 압도적으로 많아진다.[26]
2.2.2.3. 수명
수십 년에서 1백 년 정도를 지켜볼 때는 철근 콘크리트 건축이 순수한 콘크리트보다 내구도에서 강하다. 그러나 관측범위를 수백년으로 두면 이야기가 다르다.
균열과 철근부식으로 인한 콘크리트 구조물의 인장강도약화

디스커버리 프로그램에서도 나온 바가 있고, <The Knowledge: How to Rebuild Civilization in the Aftermath of a Cataclysm>라는 책에서도 지적하는 문제인데, 건물이 멀쩡할 때는 표면의 페인트나 외장재가 버텨주니 괜찮지만, 관리가 되지 않아 그것이 모두 떨어져나가고 콘크리트표면에 균열이 생기면, 그안으로 외부의 공기와 습기가 스며들면서 철근에 부식이 진행되고, 또한 철은 이미 생긴 녹이 인접한 부분의 부식을 더욱 촉진하는 특성을 가지고 있다. 철근이 부식되어 녹이 생기면 그 부피가 2배 이상 증가하기 때문에 이로 인한 콘크리트 파괴가 발생한다. 디스커버리에서 2차 세계대전때 지어진 콘크리트 벙커 구조물들이 몇십 년이 지나면서 부서지는 과정을 그림으로 보여주었는데, 철근이 힘을 잃어감에 따라 오히려 콘크리트의 붕괴가 가속화되는 현상이 일어나고 있었다. 그리고 장기적으로는 많은 노력을 기울이더라도 미세한 콘크리트 균열과 그 틈을 파고든 철근 부식은 완벽하게 방지하기 어렵고, 수명은 짧아진다. 그리고 방송에도 나왔지만 반대로 순수한 콘크리트와 석재로 지은 고대 로마의 건축물은 1천 년을 넘는 시간에도 불구하고 상대적으로 원형을 그대로 유지하고 있다.

일반적인 건물 내구연한을 30~50년으로 잡는 것도 여러가지 요인이 있지만 철근의 수명과도 직접적인 관계가 있는데, 오랜 시간이 지날수록 내부의 철근이 상하므로 보수비용이 증가하고 건물 전체의 내구도가 약해져 위험하기 때문이다. 일반적인 건물이라면 아예 헐고 다시 지을 수 있지만 역사적인 가치 때문에 보존이 필요한 문화재는 문제가 심각해진다. 순수한 콘크리트나 석재의 경우는 설계가 잘 되었을 경우 원재료를 보존하면서도 원형을 초장기간 유지할 수 있어 이런면에서 유리하다.

물론 지을 때부터 철근에 에폭시 도막 등 부식방지 처리를 하는 방법으로 수명을 연장시킬 수 있지만, 비용은 부식방지가 없는 일반적인 철근을 쓰는 것보다 많이 올라갈 수 밖에 없고, 시공시에도 각별히 주의를 기울여야 하는 등 여러모로 까다로워진다.

2.3. 주거시 특징

2.3.1. 단열

물체의 두께가 1m일 경우를 가정하여 각 건축재료별 열전도율을 나타내는 열전도율 도표를 살펴보면, 철근 콘크리트의 경우 복합재료이기 때문에 열 전도율은 2.3~2.5로 그렇게 크게 높지는 않은데, 목재가 0.14~0.16인 것과 비교하면 상대적으로 높은 편이다.

물론 건축학이나 건축공학에서 주택의 단열을 일컬을 때는 열 전도뿐만 아니라 열 전도와 복사를 모두 고려한 열 관류율 개념을 사용하고, 또한 열 용량을 기준으로 본다면 당연히 보통 얇게 시공되는 목재보다는 상대적으로 두껍게 시공되는 콘크리트의 열 용량이 크기 때문에 외단열 시공 기준으로 냉난방 시에 실내온도 유지는 콘크리트가 유리하다. 일상에서 돌냄비가 오랫동안 온도를 유지하는 것과 같다. 그러나 반대로 냉난방을 가동하였을 때는 기존의 온도를 계속 유지하려 들기 때문에 곧바로 시원해지거나 따뜻해지지 않는다. 목조의 경우 이와는 달리 콘크리트처럼 열을 흡수하지는 못하므로 냉난방으로 맞춰둔 실내기온을 장시간 유지하기는 힘들지만, 계절과 상관없이 되도록 일정한 기온을 유지한다. 나무젓가락을 생각하면 쉽다.

'물론' 건물의 뼈대 재료만 따졌을 때 그러하단 것이고, 실제 단열 성능은 건물 내외부에 부착된 단열재의 종류와 두께, 시공방법, 중공층, 창호의 성능, 거주자의 생활 패턴 등 여러 요인을 고려하여야 한다.

2.3.2. 습기와 결로

콘크리트는 애초에 주요 배합재료 중 하나가 물이니 만큼, 본래 수분을 머금고 있지만 양생 및 건조과정에서 수화작용으로 사용되고 남은 자유수는 증발한다. 수화과정에 필요한 물의 양은 체적의 25%이다. 다만 딱 이 정도만 넣으면 시공이 불가능하기에 40~50% 가량 물을 첨가하는데, 이렇게 수화과정에 불필요한 나머지의 물(자유수)의 일부는 표면 바깥으로 나와 증발하고 일부은 콘크리트 내부 공극에 남는다. 이러한 자유수는 타설하고 양생 후 초기(주로 28일 내외)에는 상부면으로 용출(湧出)되지만, 꽤나 시간이 흐른 뒤인 실제 주거시에는 나오지 않는다.

실제 주거에서 문제가 되는 수분은 자유수가 아니라 건물의 콘크리트 구조물과 내부온도가 달라 공기 중의 수분이 벽면에 맺히게 되면서 생기는 결로이다. 바로 이게 벽에 곰팡이 등의 하자를 일으키는데 이것은 콘크리트 문제가 아니라, 단열재 부실시공 때문이다. 주로 겨울철 바깥의 찬 기온을 내외부의 단열재가 충분히 막아주지 못해 차가워진 콘크리트 구조체와 대기 중 수분이 만나면서 물방울 즉 결로가 맺히는 것이다. 다른 말로는 열교현상이라고 일컫는다. 겨울에 밖에 있다가 실내에 들어갔을 때 안경에 습기가 맺히거나 차가운 물을 유리컵에 담았을 때 컵 표면에 물방울이 맺히는 것과 같다. 건물의 뼈대 재료가 무엇이든간에 단열이 제대로 되어있지 않으면 반드시 발생한다.

이런 하자를 겪지 않기 위해서는 집을 구할 때 벽체의 온도나 창문과 개부의 누기와 단열상태를 꼼꼼히 확인해봐야 하지만, 관련업 종사자가 아니라면 제대로 확인하기가 힘들다. 설사 종사자라고 해도 잠깐 집을 살펴볼 때는 안 보이던 문제점들이 실제로 주거할 때에 뒤늦게서야 보이는 경우도 있으므로 단시간에 단열재 부실시공을 알아차리기가 힘들다. 전문가더라도 건축용 온도계와 각종 장비, 열화상 카메라를 들고가지 않는 이상 제대로 알기 힘들다. 그나마 벽체의 모서리 부분이나 창문 주변 부분이 벽지가 들뜨거나 젖은 흔적, 혹은 곰팡이가 핀 흔적이 있다면 문제가 있다고 유추할 수는 있다.

이런 부실시공은 주로 시공상의 어려움으로 창문이나 문이 위치한 개구부(開口部)주위와 벽이나 천장 등의 모서리에서 많이 보인다. 특히 겨울철에 이루어진 단열공사 때 이런 하자가 많이 발생하는데, 공사할 때는 바짝 얼어서 수축되어있는 재료들이, 날이 풀리고 입주할 시기가 되면 일정 부분 팽창하면서 여기저기 틈이나 하자가 생기고, 특히 단시간에 지어올린 원룸이나 빌라는 말할 것도 없다. 아파트도 종종 이런다. 이러한 하자는 냉난방 효율에도 직접적으로 영향을 미치기 때문에 냉난방비까지 몇 배를 내야하는 이중고를 겪게 되므로 반드시 확인하고 입주하여야 한다.

2.3.3. 층간 소음

아파트에서 가장 큰 문제중 하나는 층간소음이다. 사실 아파트가 처음 도입된지는 많은 시간이 흘렀으나 유독 2017년 기준 근 10여년 사이에 이웃간 분쟁이 많아졌는데, 이는 복합적인 문제가 여럿 섞여있다. 일단 콘크리트 재료적으로 많은 발전과 연구가 진행되면서 강도가 높아지게 되었고 그 덕에 종전보다 더 얇은 두께로 벽과 층계를 만들 수 있게 되었다. 그러나 반대 급부로 그만큼 구조의 두께가 얇아져 소리가 쉽게 투과된다.이런 문제를 건축음향 학계에서는 물론이고 건설회사들도 이미 예상하고 있어서 슬라브 구성 시 차음을 위한 층을 넣는 등 여러 노력을 기울여 왔다.[27]

그럼에도 전혀 층간소음이 줄지 않고 반대로 증가한 것과 같이 느끼는 이유는 건축적으로만 보자면 첫째로 아파트의 고층화, 둘째로 창호(창문) 성능, 셋째는 층간소음의 주체가 윗집이 아니기(?) 때문이다.

외부소음의 감소는 당연히 인간 청력의 역치값을 내리게 되고, 저층부에서나 과거의 낮은 차음성능을 지닌 창호가 있는 아파트에서는 외부의 소리에 섞여서 들리지 않았을 층간소음이 전에 없이 크게 들리게 되는 일이 발생하는 것이다. 거기다가 밀도가 조금 더 높은 아파트의 경우 단순히 윗집에서 내는 소리만이 아니라 윗집의 옆집이나 윗집의 윗집이 내는 소리가 철근 콘크리트 벽체를 타고 내려와 전달되는 경우도 흔하다. 당연하게도 반대로 아랫집에서 올라오는 경우도 있다.

단순하게 윗집에서 내는 소리가 차음층과 단열재가 시공된 천장을 지나 공기에 전달되어 들리는 것보다 윗집의 옆집에서 낸 소리가 벽을 타고 서라운드로 울리며 사람의 귀 가까이서 들리는거나 크게 다르지 않다. 오히려 더 클 수도 있다. 게다가 일반적인 공기를 통해 전해지는 소리의 경우 방음재에 의한 차음 효과가 크나, 아이들이 뛰는 소음, 바닥에 뭔가 떨어지는 충격음의 경우 방음재에 의한 효과가 떨어지기 때문에 아무리 방음재 시공을 잘해도 층간소음에 의한 피해는 계속된다. 더불어 난방 때문에 단열재까지 들어가는 슬라브와 외부벽체와 달리 아파트의 내부벽체는 배선이나 배관 제외하면 통짜로 철근 콘크리트다. 인터폰 등의 전기 배선을 위한 수직배관을 타고 소음이 들리는 사례도 있고, 실제 윗집의 옆집에 의한 층간소음에 시달리는 등의 사례도 찾아보면 어렵지 않게 찾을 수 있다. 층간소음 들린다고 단순하게 윗집의 잘못으로 볼 문제는 아니라는 것은 알아두어야 한다.

이러한 층간소음 문제를 해결하기 위해 구조기준 상 100~120mm 정도면 충분한 슬래브 두께를 주거공간에서 150mm에서 210mm 늘리는 등 여러가지 대책을 내놓았으나, 딱히 효과는 보지 못하였다. 현재는 구조적으로 이를 해결하기 위해 기존의 솔리드 슬래브 대신 중간에 공극이 있는 중공 슬래브를 사용하는 공법이나, 기존의 전단벽식 구조 대신 모멘트-골조를 사용하는 대안이 제시되고 있다. 하지만 이러한 방법은 필연적으로 슬래브가 두꺼워지거나, 이와 함께 두꺼워진 보 때문에 층고를 늘려야하는 등 층고에 따른 층수 확보가 민감한 아파트에서는 실질적으로 적용이 불가능하여 아직도 구조적으로 뚜렷한 해결책은 없는 상황이다.

2.4. 시공시 특징

자세한 것은 철근 콘크리트/시공 참조.

2.5. 철근 콘크리트 구조의 종류

2.6. 현황

2.6.1. 시공

개발 이후 현대에 이르기까지 건축재료의 주류 중 하나. 현대에 쓰이는 콘크리트의 상당수는 바로 이 철근 콘크리트로 쓰인다.

강도에 비해 자중이 크다는 단점이 있어서, 5~6층 이상의 건물은 기초 및 1,2층은 철근 콘크리트로, 그 이상은 경제성문제(돈 문제로..)로 철골로 구조를 잡아주는 경우가 많다. 그러나 자중이 큰 것이 단점인 것만은 아니다. 그만큼 진동과 소음이 적게 일어나서 사용성이 좋아진다.

다만 콘크리트의 재료로 들어가는 골재의 염분 함유정도가 중요한데, 이는 염분으로 인한 철근의 부식이 문제가 되기때문. 역설적으로 염분을 첨가하면 콘크리트는 더 빨리 굳는다. 혼화제 중 하나인 경화제의 원리이고 시공시 유의사항이기도 하다.[28] 법정기준으로는 골재를 세척하여 염도 0.04% 이하여야 한다. 강에서 채취하는 골재용 모래의 수요를 생산이 못따라가고 바닷가에서 퍼오거나(해사), 산에서 채취하는 속칭 마사, 간 을 의미하는 쇄석을 이용하는 경우도 많다. 그런데 이 과정에 강이나 바다오염이 된다는 비난도 많다.

콘크리트에 철근의 비중을 어떻게 할 것인지는 최대 철근비와 최소 철근비를 계산하여 그에 적합한 분량을 배치 및 투입하는 것이 바람직하나, 6층 이하 건물은 구조전문가인 건축구조기술사가 아닌 건축사가 구조설계를 하거나, 그도 아니면 형식적으로 설계하고 허가만 맡는 국내 건축현실 상 이것을 제대로 계산하는 경우가 극히 드물고, 중소현장의 경우에는 설계사가 이것을 계산하거나 기재하지 않고 소장이나 시공자 마저도 정확한 비중대비 철근비에 대한 계산값이 없어서 현장경험에 의거하거나 주먹구구식으로 진행하는 경우가 많다. 건축의 균열이나 유지보수에 있어서 콘크리트 대비 철근의 투여비중은 매우 중요한 문제이나 제일 중요한 부분에서 공학적인 고려가 매우 부족한 상황이다.

2.6.2. 교육

철근 콘크리트 구조설계에 대한 설계법은 콘크리트구조 학회기준(현 KCI 2018)을 한국콘크리트학회에서 제정하고 이를 법제처에서 행정규칙으로 공표하고 있다. 건축구조기준(현 KBC 2016)에도 철근 콘크리트 구조로 정의되어 있지만, 이는 KCI 2012를 그대로 가져다 쓴 것이다.[29]

대학에서 건축공학과 토목공학을 전공할 경우 콘크리트 공학(재료)과 철근 콘크리트 공학(구조) 과목이 개설되어 있고 주로 3학년 이상 학생들이 1, 2학기에 걸쳐서 듣도록 커리큘럼이 짜여져 있다. 곧바로 철근 콘크리트 설계를 배우기에는 일반적인 공학과목과 다른 특이점이 있어서 난해하다. 재료역학과 구조시스템을 미리 공부하고 나서야 어느정도 감이 잡히고, 구조역학도 병행해서 공부해야 배운걸 실제로 써먹을 수 있다.

그외에 일반적으로 콘크리트 강도를 단위로 나타낼 때는 응력 단위로서 N/㎟, MPa(메가파스칼)을 사용한다. 물론, 최근에 나온 책들은 MPa와 같은 SI단위로 적혀있지만, 과거에 나온 책들은 kgf/㎠ 같은 MKT 단위로 쓰여 있다. 2003년 전후로 SI단위를 적용했기 때문인데, 일단 단위를 환산하는 것은 둘째 치고 이런 단위가 적혀있는 책을 제반 지식 없이 읽는 것은 삼가야 한다. 철근 콘크리트 분야는 설계방법과 구조기준 변화가 타 공학분야에 비해 매우 빈번하므로 과거의 기준과 단위로 쓰여진 지식은 현재에 통용되지 않는다.

설계기준이나 구조기준 변경 전후로 혼동하는 경우가 잦은데, 기술사, 기사, 공무원, 행정고시 기술직, 변리사 등 철근 콘크리트 과목이 있는 시험에서 과거 설계기준으로 답안 작성 시 점수를 전혀 주지 않으므로 주의하여야 한다. 원서나 ACI 구조기준을 보는 경우에도 주의하여야 하는데 국제 단위로 환산되어 있지 않은 경우 단위나 공식을 혼동 할 수 있으므로, 단위가 환산돼서 들어온 책(International Version, 또는 SI unit(단위계)이라고 표지에 쓰여져 있다.)을 골라서 보는 것이 편하다.

3. 속설

녹은 그 자체로 철근 표면을 거칠게 만들기에, 녹슨 철근은 녹슬지 않은 철근보다 콘크리트와 사이에서 부착강도가 높아진다. 부착강도는 콘크리트와 철근의 완전부착이라는 설계의 전제조건 충족을 위해 매우 중요하다. 시공 전에 철근 표면에 어느정도 녹이 슬었다 해도 이를 굳이 제거하지 않고 시공하는 이유이다. 이러한 철근은 콘크리트 내부에서 공기유입이 차단되고 시멘트의 알칼리 성분으로 산화방지 피막이 형성되어 더 이상 부식이 진행되지 않는다. 강구조에서 고력볼트 접합시에 접합면에 생긴 녹을 굳이 제거하지 않는 이유도 고력볼트 접합법의 기본 원리인 부재간 마찰력을 높이기 위함이다. 가끔씩 녹이 슨 철근을 건축에 사용하는 것 자체를 부정적으로 보는 시선이 왕왕 있는데, 이를 그대로 쓴다고 바로 문제가 되는 것이 아니라 부식이 현저히 진행하여 더 이상 내력을 발휘 할 수 없을 경우만 문제가 된다.

흔히 기초가 부실하거나 무너질게 뻔한 것을 의미하는 사상누각이라는 사자성어가 쓰인다. 하지만 모래는 건축에 굉장히 적합한 토질로서 모래지반에 건축하기 위한 각종 토질개량 공법들이 셀 수 없이 많이 있다. 때문에 기술적으로 현재에 와서 사상누각은 반대의 의미이다. 만약 서울의 한강 이남인 강남에 거주한다면 해당 집은 모래 위에 지어져 있는 경우가 대부분이다. 평소에는 문제가 없지만, 문제가 되는 것은 모래 지반에 지하수가 흘러들고 지진 등의 큰 진동이나 외력이 가해질 경우 액상화(Liquefaction) 되어 내력을 상실하는 것이 문제다. 모래와 물을 채운 수조를 들었다가 바닥에 쿵하고 놓으면 모래가 물속에서 비산하는 것 같은 현상이다. 전문가들이 서울이 지진에 취약하다는 우려를 표하는 것이 이러한 이유 때문이다. 그러나 단순히 지하수만 흘러들었다면 적절하게 축여진 모래 지반은 오히려 더 단단해진다.

일반인들은 건축 시 철근을 뺀다는 말을 부실공사의 동의어로 보는 경향이 있다. 위에 서술한 연성파괴는 일반적으로 정모멘트를 받는 보의 아랫쪽, 즉 인장응력을 받는 부분 최외단인장변형률이 최소한 철근 항복변형률의 2배에 이르도록 유도하기 위해 최대 철근량을 제한하고 있다. 따라서 무작정 많은 양의 철근을 넣을 수 없다. 반대로 철근을 너무 많이 빼면 당연히 문제겠지만, 적절하게 빼면 휨강도를 조금 손해보더라도 연성설계가 유도되어 더 안전한 건물을 지을 수 있게 된다. 건물이 단단한 것이 중요한게 아니라 그 거주자의 안전성을 확보해야 한다는 것이 현재 철근 콘크리트 구조 설계 경향이다. 문제가 되는 것은 현장에서 다른 목적을 가지고 철근을 임의로 줄여버리는 것인데 상술 하였듯이 6층 이하 건물은 구조설계가 건축구조기술사가 아닌 건축사들에 의하므로 이를 제지할 방법이 많지 않다. 이미 타설된 콘크리트 내부에 철근이 제대로 박혀 있는지 판단하는 방법은 매우 번거로워서 구조진단 받아야 할 정도가 아니라면 밝혀내기 어렵기 때문이다.

철근 콘크리트로 만든 집이 새집증후군이 많다는 오해가 많은데, 원인은 철근 콘크리트가 아니라 집 벽이나 여러 인테리어 과정에 쓰인 재료나 접착제에서 나오는 포름알데히드가 원인이다. 김병만은 한글주택 관련 책자에서 나무로 만든 집은 각종 화학첨가제가 많은데 콘크리트는 아니라고 책으로 썼는데, 이에 대하여 건축가들도 반응이 극과 극이다. 땅콩집으로 유명한 건축가 이현욱은 나무도 저가를 고집하다보니 첨가제가 들어가는 건 사실이지만, 그렇다고 콘크리트는 아니라고 하는 건 완전한 엉터리라고 반응하며 집을 지을 때 인부들이 입은 걸 보면 알 수 있다고 반론했다. 집 디자인이 꽤나 독특하여 화제가 된 건축가 문훈도 "집을 지을 때 보면 콘크리트 관련 집을 짓던 인부들은 온갖 피부병에 노출되어 있던 걸 많이 보았는데 목재 집은 그리 없었다."고 반응했다.

그런데 사실 건축재료에 관한 문제는 건축가들이 왈가왈부할 게 아니라 건축공학이나 재료공학, 실내환경 전문가들의 영역이다. 더불어 이 사람들이 말하고 있는 현상은 애초에 시멘트의 특성이다. 자세한 내용은 해당 문서 참조. 시멘트는 물과 섞이면서 수화생성물로 수산화칼슘을 생성하는데 이는 강알칼리성을 띤다. 피부에 묻으면 땀과 섞일 경우 당연히 해롭다. pH 11~13 수준의 강알칼리성 물질이 피부에 달라붙으면 당연히 단백질을 용해하고, 시멘트 분말이 안구에 들어갈 경우 큰 피해를 줄 수 있다. 분말 형태의 시멘트는 풀풀 날리기 일쑤이며, 이 날린 가루가 땀에 젖어 있는 인부의 온몸에 달라붙는데 피부가 멀쩡할 리 없다. 새집증후군과는 다른 문제다. 이처럼 콘크리트 시공시에는 당연하게도 시멘트 분말이 날리고 거기에 첨가된 혼화재(플라이 애쉬[30], 실리카 퓸[31] 등), 혼화제(AE제, 유동화제, 감수제, 착색제 등) 역시 배합 시 비산할 수 있다. 그런데 어디까지나 시공 시 문제지 양생 후 문제가 아니다. 경화된 콘크리트에서 배합시 들어간 화학물질이 균열이나 파괴 등 특별한 사유 없이 마감 처리된 실내로 흘러 나온다는 것은 재료적 특성상 있을 수 없는 일이다.

더불어 앞서 짧게 언급했지만, 애초에 새집증후군은 건물의 뼈대 재료와는 무관하다. 새집증후군의 문제로 지적되는 포름알데히드는 주로 접착제나, 공사후 남은 먼지등이 원인인데, 애초에 이것들은 목조가 되었든 철근 콘크리트가 되었든, 건물 골조(뼈대)에서 배출되는 것들이 아니라 실내에 장식되는 최종 마감재가 휘발성 유기화합물(VOC, Volatile Organic Compound)의 배출 기준을 충족하여 생산된 것인지 아닌지, 혹은 창문 틈새에 쓰인 우레탄 폼이 환경기준을 충족했는지 등에 의해서 배출여부가 결정된다. 주로 장식으로 설치된 몰딩이나 걸레받이나 내부에 설치된 합판등이 화학물질 배출기준도 충족치 못하는 저가의 수입산일 경우이거나, 건축자재의 파편이나 먼지들이 제대로 청소되지 않은 경우, 혹은 타일이나 벽지에 바르는 접착제나 창호에 기밀성을 위해 도포한 폼이 친환경제품이 아닐 경우이다. 근 10년간 국내에서는 건축자재 규제가 심해져서 친환경제품이 아닌 접착제는 건축현장에서 거의 사용되지 못하고 있기 때문에 보통은 다른 재료에서 문제가 터져나오는 경우가 많다. 국내에서 목조주택을 알러지나 아토피 등의 면역계 질환에 좋다는 잘못된 정보가 퍼져나갔는데, 목조주택의 종류도 한두가지도 아닐 뿐더러, 목재의 자정작용은 생나무가 실내로 노출되어야 얻을 수 있는 이점이므로 경량목 구조는 여기에 거의 해당사항이 없고(설계상 의도적으로 뼈대를 노출시킨 경우가 아니라면), 팀버프레임이나 통나무주택(Loghouse)등에 해당한다.

결론적으로 위에 언급된 김병만을 포함한 건축가들의 의견충돌이 전부 잘 모르는 사람들끼리 장님 코끼리 만지듯이 대화한 것에 지나지 않는다. 한국에서 건축가는 설계의 전문가지 재료, 건축공학적인 전문가가 아니다. 건축가를 철근 콘크리트 등 건축 다방면의 전문가로 아는 경향이 많은데, 유독 한국에서 설계자와 공학자의 역할 구분이 명확하게 나뉜다는 점을 알아두어야 한다. 북미나 선진국에서 설계사들도 구조공학과 재료공학을 반영하여 도면을 제출하는 것이 제도화된데 비해, 한국에서는 서로 배우는 것도 다르고 아는 것도 다르고 하는 일도 다르다.

이게 얼마나 다른지 잘 모르겠다면, 단적으로 건축가를 키워내는 건축학과는 일반적으로 물리와 화학을 배우지 않는다! 물리를 안 배우는데 역학을 배울 리도 만무하고. 사실상 건축학과는 공과계열보다는 미학계열에 가깝다. 한마디로 건물을 미적으로 수려하게 만들고, 실사용시 편하도록 건물을 디자인하는 게 목적인 학문. 물론 건축학과 학생들도 취업문제 때문에 결국 건축기사 따려고 따로 공부한다. 대조적으로 건축공학과는 물리/화학을 배우고 역학 역시 제대로 배운다. 많은 다른 국가들이 토목공학과에서 건축공학과 일도 하는 것에 반해 한국과 일본은 건축공학과 토목공학이 나뉘어 있으므로 건축공학과 학생들은 더 건축의 이학적 특성에 대해 전문적으로 배운다.

4. 기타

철근 콘크리트라는 제목의 특성화고등학교의 전문 교과도 존재했다. 현재는 '철근 콘크리트 시공'으로 변경된 듯.

근대 이후 각종 근대화된 화기로 인해 점차적으로 쇠퇴 하고 있던 요새들을 다시 한번 부활시킨 원인이기도 하다. 물론 사용례는 조금 다르지만, 철근 콘크리트로 만들어진 요새벙커, 토치카나 진지등은 현대적인 포병 상대로도 강력한 방호력을 자랑했고 제2차 세계 대전까지 요긴하게 쓰였으며 항공전력이 본격적으로 발달하자 사라졌다. 요즘에도 없는 것 보다는 낫기 때문에 요새와 같은 본격적인 대형 구조물은 사라졌지만 철근 콘크리트로 지어진 작은 군사적 방어 시설들이 여전히 활용되고 있으며 한국도 전방을 중심으로 유지하고 있다. 최전방의 GP 또한 철근 콘크리트로 지어진 요새이며, GOP의 축선이나 최전방 부대의 거점에도 포격을 피할수 있는 작은 벙커나 철근 콘크리트로 지어진 유개호들이 유지되고 있으며 포탄을 방어할 목적은 아니지만 전방지역 길목마다 설치된 대전차 방어 낙석 등도 철근 콘크리트로 지어졌다. 다만 후자는 최근 그 관리로 안전성에 우려가 제기되고 있고 점차 적으로 철거가 이루어지는 중.

대표적으로 나치의 멸망직전인 베를린 전투때의 동물원 대공 포탑이 있다.철근 콘크리트로 시공된 최대 두께 2.4미터에 달하는 거대한 대공진지는 시가전에서 요새의 기능을 했으며 소련군이 8인치 포를 끌고와 직사를 쏴대도 흠집 조차 나지 않았으며 파괴나 함락이 불가능하자 사절을 보내 항복을 권유해 무장을 해제시켰다.

철근 콘크리트로 만들어진 건물의 효용은 지금도 확인 할 수 있는데, 중동 등지에서 이루어지는 시가전이나 전쟁의 양상을 보면 군사적 목적으로 만들어지지 않은 일반 건축물도 상당한 방어력을 가지고 있는것을 볼 수 있다. 시가지를 포격으로 갈아 엎는다는 수사적인 표현이 자주 쓰이나 건물의 형체는 조금 망가질 망정 포격이나 전차의 직사포 따위로 한 두 발 맞추는건 흠집이나 내는 수준에 불과 하며 벌집이 된 집도 집의 기능을 잃어버렸을지는 몰라도 진지로서의 기능엔 지장이 없다. 시간이 없는 교전 상황속에서 정말로 건물을 공격으로 철거 시키기 위해서는 대형 항공폭탄 밖에 답이 없다.

군사적 목적을 띄고 조성되고 건축된 일산신도시의 옛 아파들은 아파트 복도에 총안구가 뚫려 있을 만큼 본격적인데, 만약 재래전이 다시 벌어졌다면 북한군은 포격을 동반하고도 일산을 돌파하는데 시간이 걸렸을 것이다.

이웃나라 중국에서는 철근 대신에 대나무를 넣어 시공하기도 한다. 물론 100% 부실공사로 연결되므로 절대로 따라하지는 말자.


[1] 사진에 있는 철근 콘크리트 부재는 공장에서 양생한 뒤, 건설 현장으로 이동시켜 조립하는 방식의 Precast Concrete다. 일반적인 철근 콘크리트는 현장에서 직접 철근을 배근하고 거푸집을 만든 뒤 타설하고 양생하여 만들어진다. 이렇게 공장에서 생산하는 경우 양생 환경(온도, 습도, 진동제어 등)을 최적화 할 수 있고 작업자의 숙련도에 따른 품질 차이를 줄일 수 있기 때문에 콘크리트에 중요한 초기 및 장기 강도 증진과 품질 확보에 유리하다. 그러나 이미 굳어버린 콘크리트이기에 현장에서 부재간 접합 시에 특수한 공법이 요구된다.[2] 콘크리트는 1.0~1.3×10^-5, 철은 1.0×10^-5로 건축에 사용하는 단계에서는 사실상 똑같다고 볼 수 있는 열팽창계수를 가진다. 즉, 온도가 아무리 높아졌다가 낮아져도 같이 팽창하고 수축하기 때문에 벽이 충격을 받지 않는 이상 자연적으로 금이 가거나 틈이 벌어지는 일이 없다는 것이다. EBS다큐프라임 건축관련편에서 신이 건축계에 내려준 선물이라고 평가했다.[3] 콘크리트만의 무게는 1입방미터당 2.3톤 가량이다. 다만 사용하는 골재의 종류에 따라 입방미터당 1.85톤에서 2.5톤까지 정도 차이가 있다.[4] 우리나라 건축물의 경우 아직까지도 날림이나 부실 시공과 더불어 어른들의 사정에 의해 수명을 20~30년 정도로 보는 경향이 있으나 유럽과 영미권에서는 철근콘크리트의 수명을 평균 100년 이상으로 보고 있다. 단적인 예로 90년대 초반에 지어진 날림 빌라단지들을 유심히 보면 애초에 만들 때 잘못만들어서 철근이 바깥으로 노출되어 있다거나, 피복이 진작에 떨어져 나갔거나 붕괴신호를 보내고 있는 건물들이 많이 보인다. 그외에 시간이 지나면서 골조(건축물의 뼈대) 자체에 문제가 발생하기보다는 균열로 인한 철근 부식, 상하수도설비, 전기설비 등에 문제가 생기므로 100년 이상 사용하려면 어느 정도의 리모델링이나 보수공사는 필수다.[5] 김상식이 쓴, 《철근 콘크리트 구조설계》제5판에 기재된 내용과 한국콘크리트협회에서 발간한 《최신 콘크리트 공학》(2011년 개정) 및 다른 것을 보충하여 서술한다. 차후 자료 정리하여 추가 바람.[6] 당시에는 석재나 벽돌을 연결하는 접착재료 개념으로 사용하였고 현재와 같은 결합재로서의 콘크리트 건물은 1800년대 들어서야 비로소 지어졌다.[7] 당시에는 당연하게도 철근이 없어 콘크리트의 단점인 인장력을 보완할 재료로 말총을 대신 넣었다고 한다. 공교롭게도 이를 현재 관점에서 보면 첨단 콘크리트 공학 분야 중 하나인 '섬유보강' 콘크리트(Fiber Reinforced Concrete)를 이미 2000년 전에 사용한 셈이다. 또한 화산재 등을 섞어서 성능을 개량하기도 했다. 이는 현재 사용하는 혼화재 중 하나인 플라이 애쉬의 사용과 상당 부분 동일한 개념이다.[8] 1) 콘크리트의 열팽창계수는 강재와 같다. 2)콘크리트의 탄성계수는 강재의 약 1/20 이다. 3)포틀랜드시멘트콘크리트는 내화성능을 갖고 있다. 4)보에 보강재로서 철근을 사용하는 것이 형강을 사용하는 것보다 경제적이다. 5)높은 콘크리트 굴뚝에 길이방향 철근과 더불어 횡방향 철근을 사용하는 것이 사용하지 않는 것보다 더 좋다.[9] 이때 지어진 건물은 1979년 부산대교 건설로 인해 남아있지 않고 꼭대기 종탑부분만 떼어내서 현재 부산본부세관 앞마당에 전시 중이다.[10] 자세한 내용은 조선총독부 청사국립중앙박물관 참조.[11] 9층이지만 중간에 4층이 없어서 실제로는 지상 8층 건물이다.[12] 현재의 롯데호텔 서울 자리로서 롯데에서 건물과 부지를 구입했고, 반도호텔 건물은 1979년에 철거하고 국립도서관 부지와 합쳐서 호텔롯데 및 롯데백화점 건물을 지었다. 이때 지어진 건물 또한 1980년대에 63빌딩이 지어지기 전까지 한국에서 가장 높은 건물이었다.[13] 이 부분에서 대부분 강도와 응력을 혼용해서 사용한다. 교수들이 쓴 교과서에서도 마찬가지인데 이는 원서를 번역하면서 발생한 문제이나, 전공자들은 다 알아먹어서(?) 크게 문제되지는 않는다.[14] 인장응력도 낮고 균열이 발생하므로 인장측 면적도 균열 발생에 따라 점점 작아진다.[15] 요즘 많이 연구되고 있는 섬유보강 콘크리트 중 인장응력을 높게 발현하면서 변형률 경화 현상을 나타내는 재료들로 휨강도를 계산해보면, 일반적인 철근 콘크리트에 요구되는 인장철근량의 반 정도로 동일한 휨강도를 구현해 내는 것을 볼 수 있다. 기존의 콘크리트로 설계할 때는 콘크리트 자체의 휨인장강도를 무시하여, 철근을 많이 집어넣어서 불측의 하중에도 견딜 수 있게 하나, 섬유보강 콘크리트를 그런식으로 설계했다간 철근을 과다하게 넣게 되어 취성파괴가 올 수 있다. 안타깝게도 우리나라는 아직 이러한 사항이 구조기준에 반영되지 않았다.[16] 소성구간에서 변형률이 증가함에 따라 부담할 수 있는 응력이 증가하는 거동을 변형률 경화(Strain-Hardening)라 하는데 그 대표적인 재료가 철이다. 반대로 콘크리트는 변형률이 증가함에 따라 항복 변형률에 도달하고 나면 급격하게 내력을 상실하는데 이를 변형률 연화(Strain-Softening)라 한다.[17] 일반적으로 사용되는 콘크리트의 압축강도는 24MPa, 철근 항복강도는 400MPa 이다. 철근 항복강도가 400MPa 이므로 압축강도나 인장강도는 더 높아진다.[18] 만약 두 재료의 열팽창률이 달랐더라면, 제작 당시 상황과 온도가 달라지면 내부의 각 부재의 길이가 따로따로 변하면서 내부의 부재끼리의 접촉면에서 엄청난 마찰이 작용할 것이고, 온도 변화가 심하다면 이 마찰력으로 인한 응력 때문에 재료분리가 일어나며 자재가 부서질 것이다. 복합보가 가진 상당한 장점에도 불구하고 복합보의 종류가 많지 않은 이유.[19] 최소한 항복변형률의 2배 이상, 대부분 2.5배 이상 되도록 유도한다.[20] 해당 부재가 받을 수 있는 내력이 100일 때 이를 85정도만 부담할 수 있는 부재로 가정하고 설계하는 것으로, 이렇게 감소된 내력은 혹시 모를 초과하중에도 안전성을 담보한다. 현행 설계법에서 안전성 확보를 위한 방법 중 하나이다. 때문에 파괴 가능성이 높을 수록 그 값을 낮춘다.[21] 보통 만들어지고 시간이 지나면서 그 증가율이 점점 감소하여 5년이 지났을 때 최대(시간경과계수 2.0)가 되어 더 이상 변형이 일어나지 않는다고 본다. 건조수축과 밀접한 현상이라 콘크리트가 있는 곳의 습도에 영향을 받는다. 이 때문에 다리 건설시 크리프 변형량을 미리 계산해서 그만큼 봉긋하게 짓는다.[22] 이 때문에 콘크리트의 부피가 굳은 후에 더 작아진다. 즉 수축이 일어난다. 그런데 내부보다 겉표면에서 증발하는 수분량이 더 많으므로, 표면과 내부의 부피차이가 생기면서균열이 발생한다.[23] 철근 콘크리트는 내진설계를 적용하면, 설계때부터 복잡해지고, 시공시에도 철근 배치에도 각별히 신경써야하는 등 손이 많이가지만, 목구조는 내진설계용 철물만 더 부착하면 땡이다...[24] 용도에 따라 화장실 등이 위치한 코어의 전단벽을 어떻게 구성할지는 달라지지만 실내면적 확보가 민감한 아파트와 같이, 얇은 수도관이나 전기배선 정도만 들어간다면 부득이하게 전단벽 내에 구성한다. 그외 빌딩이나 상가 건물 등 스프링클러와 같은 소화수 배관이나 공조설비를 위한 덕트 등을 구성해야 한다면 벽체의 단면 내부가 아니라 전단벽으로 둘러쌓인 파이프 샤프트를 따로 만들어서 층간을 잇는다. 이러한 건물들은 내력벽과 타일 사이에 공간이 있어서 그 부분을 통해 세부 배관을 놓는다.[25] 당시에 사용하던 허용응력 설계법은 파괴상태(0.85fck)가 아니라 그 바로 전인 최대 응력상태(fck)를 기준으로 설계했고 철근 콘크리트를 탄성 재료로 간주하였다.[26] 인명이 걸린 일인 이상 즉시 영업을 정지하는게 옳으나 백화점 내 상품들을 보존할 목적이었는지 한번에 출입통제를 하지 않았고 최상층부터 상품 이동 및 철수를 진행하고 출입을 통제했다. 4층까지 철수가 된 시점에서 붕괴하였다.[27] 참고로 세계에서 가장 복잡한 슬래브를 구성하는 나라가 우리나라다. 바닥난방이 그 이유인데 바닥난방 시공하면서 차음성능 향상을 위한 재료 한장 더 넣는건 일도 아니다.[28] 다만 시공의 용이성을 위해서 강도를 희생하는 것은 부득이한 경우를 제외하고는 하지 않는다. 부득이한 경우란 극단적인 시공난이도 때문에 높은 시공성(workability) 확보가 요구되는 경우, 섭씨 4도 정도 기온에서 긴급 타설할 경우 등인데 이 경우 조강 콘크리트를 사용하거나 혼화제를 사용하고 골재나 물을 가열하여(시멘트는 절대로 가열해서는 안된다.) 장기강도를 손해보고 재령 28일 강도를 3일 안에 확보한다.[29] 애시당초 건축구조기준 2016이 사실상 기존에 한국콘크리트구조기준(KCI2012)와 건축구조기준(KBC2009)를 합친 것이기 때문이다. 크게 바뀐게 풍하중 기준 밖에 없다.[30] 화력발전소에서 석탄 연소시 발생하는 미분말을 정전기 포집한 것.[31] 금속 실리콘, 페로 실리콘 합금 제조과정 시 나오는 SiO2 미분말을 정전기 포집한 것.

분류