3차 특수 유니터리 군은 쿼크의 u,d,s 맛깔 대칭이나 강한 상호작용의 색전하 대칭의 설명에 사용되는 개념이다. 아래와 같은 3x3 에르미트 행렬을 통해 이루어진다.[1] (겔만 행렬이라고 한다)을 이용한다.
또한 양자색역학에서 3가지 색의 쿼크(u,d,s)에 대한 색깔 대칭성의 리 군이라 볼 수 있으며, 하드론들은 그 유한 차원 표현을 이룬다.
순수수학에서는 다른 맥락으로 쓰이는데, 리 대수에서 블랙레터로 쓴 [math(\frak{su}(3))]으로 표기하는 경우가 많다.
[1] 항이 8개라서 8차원 까지 표현 가능하다. 일반적으로 SU(n)은 n^2-1차원까지 표현 가능하다.