1. 개요
Hempel's Ravens과학철학자 칼 구스타프 헴펠이 가설의 귀납적 입증(Confirmation)에 관하여 제시한 어떠한 명제를 연역법으로 입증하는 것과 그 명제의 대우를 연역법으로 입증하는 것이 동일한 것인지 아닌지에 대해 다루는 역설이다.
까마귀의 역설(Raven Paradox)이나 Paradox of Indoor Ornithology[1]이라고도 부른다.
2. 간략한 설명
여러 마리의 까마귀들을 관찰했을 때 그 까마귀들이 모두 검다면 '모든 까마귀는 검다'라는 명제를 뒷받침하게 된다. 한편, 검지도 않고 까마귀도 아닌 것들을 발견하면 '검지 않은 것은 까마귀가 아니다'라는 명제를 뒷받침하게 된다.그런데 '검지 않은 모든 것은 까마귀가 아니다'는 '모든 까마귀는 검다'의 대우이다. 고등학교 수학 시간에 배우듯이 어떤 명제의 대우는 원래 명제와 동치이다. 즉, '검지 않은 모든 것은 까마귀가 아니다'라는 명제는 '모든 까마귀는 검다'라는 명제와 동치이다. 따라서 '검지 않은 모든 것은 까마귀가 아니다'를 뒷받침하는 근거들은 '모든 까마귀는 검다'도 뒷받침하게 된다. 그러므로 우리가 검지 않은 모든 것들이 까마귀가 아님을 발견한다면 '모든 까마귀는 검다'는 명제를 뒷받침하는 근거들을 발견하는 것이나 마찬가지다. 즉, 까마귀와 전혀 관련이 없는 것들이 까마귀에 관한 명제에 대한 근거가 되는 꼴이다.
3. 상세
소박한 관점에서 과학적 방법은 실험을 하거나 세계를 관찰함으로써 주어진 가설을 입증하는 활동으로 여겨진다. 예를 들어 "(가설) 싸이는 사람이다"을 입증하는 방법은 싸이를 직접 만나 얘기를 해보고 사람이라는 걸 확인하거나 좀 더 엄밀하게 하자면 싸이의 세포를 채취해서 염색체 배열이 인간의 것과 일치하는지를 보이는 것이다. 이때 가설이 보편적 진술, 즉 "모든 P는 Q다" 같은 형식의 진술이라 한들 사정은 크게 달라지지는 않는다. 예를 들어 "(가설) 모든 까마귀는 검다"를 입증하기 위하여 집 근처 까마귀 한 마리를 잡아 그 깃털 색이 까맣다는 것을 확인했다고 해보자. 물론 집 앞 한 마리만 가지고서 이렇게 주장하는 것은 전형적인 성급한 일반화의 오류에 해당한다. 하지만 집 근처를 넘어 온 도시의 까마귀가 검다는 것을 확인했고, 나아가 온 국가, 온 세계의 까마귀가 검다는 것을 확인하는 식으로 관찰 범위를 넓혀갔다고 해보자. 통계학의 다양한 기법에서 나타나듯 충분히 많은 관찰들은 곧 "(가설) 모든 까마귀는 검다"는 진술을 지지하는 강력한 근거가 되는 것 같다.그런데 이런 결론은 결국 까마귀 한 마리 한 마리의 색이 검다는 것을 관찰하는 것이 쌓여서 이루어지는 것이다. 따라서 집 근처 까마귀 한 마리를 관찰해 그 색이 까맣다는 것을 발견하는 것 또한 "(가설) 모든 까마귀는 검다"를 미약하게나마 입증한다. 이런 직관은 러셀의 제자인 장 니코(1893 ~ 1924)에 의해 다음과 같이 표현되었다:
조건(1) 니코(Nicod)의 기준: 어떤 것이 P이면서 동시에 Q라는 점([math(\exists x (Px \wedge Qx))])을 관찰하는 것은 가설 "모든 P는 Q다([math(\forall x(Px \to Qx))])"를 (미약하게나마) 입증한다.
즉, 위 까마귀 사례의 경우 'P'를 까마귀들의 집합, 'Q'를 까만 것들의 집합으로 해석한 사례에 해당한다. 다시 말해서 그냥 '검은 까마귀를 관찰하는 것'은 '모든 까마귀는 검다'라는 가설을 미약하게 입증하는 것이 된다.
위 니코의 기준과 더불어 고려해볼만한 사안은 가설들 사이에 동치관계가 성립하는 경우다. 앞서 든 "(가설) 싸이는 사람이다"와 "(가설) 싸이는 사람이 아닌 게 아니다." 사이에는 표준적으로 동치관계가 성립한다.[2] 즉 앞에서 했듯이 싸이와 직접 얘기를 하든가 DNA 검사를 하든가 해서 싸이가 사람이라는 것을 확인하는 행위는 "(가설) 싸이는 사람이다"를 입증하면서, 동시에 "(가설) 싸이는 사람이 아닌 게 아니다" 또한 입증해주는 것이다. 동치관계인 두 가설들은 진리치가 동일하기 때문이다. 즉 이런 직관은 다음과 같이 표현된다:
조건(2) 헴펠의 동치성: 관찰 e가 가설 P를 입증하며, 가설 P가 가설 Q와 동치라고 하자. 그렇다면 e는 Q도 입증한다.
이제 당초 고려했던 보편진술 형식을 띤 가설 "모든 까마귀는 검다([math(\forall x(R(x) \to B(x)))])"로 돌아가보자.
표준적인 논리학에 입각할 때 해당 가설은 그 대우인 "모든 검지 않은 것은 까마귀가 아닌 것이다([math(\forall x (\neg B(x) \to \neg R(x)))])"와 동치이다. 따라서 어떤 관찰 사례가 "모든 검지 않은 것은 까마귀가 아닌 것이다"를 입증한다면, 조건(2)에 따라 그 관찰 사례는 가설 "모든 까마귀는 검다"도 입증한다. 그리고 조건(1)에 따라 가설 "모든 검지 않은 것은 까마귀가 아닌 것이다"는 어떤 것이 검지 않고 까마귀가 아니라는 것([math(\exists x (\neg B(x) \wedge \neg R(x)))])을 관찰할 경우 (미약하게나마) 입증된다. 예를 들어서 흰 의자가 있다는 것을 발견한다면, 이는 가설 "모든 검지 않은 것은 까마귀가 아닌 것이다"을 입증한다.
위 두 문단에서 나타난 내용을 종합하면 삼단논법에 따라 흰 의자를 발견하는 것은 곧 가설 "모든 검지 않은 것은 까마귀가 아닌 것이다"을 입증하고, 곧 그와 동치인 가설 "모든 까마귀는 검다"도 입증한다. 집 근처 까만색 까마귀를 발견하는 것이 "모든 까마귀는 검다"를 입증하는 것과 마찬가지로 말이다.
하지만 이러한 귀결은 직관적으로 매우 부당해 보인다. 가설 "모든 까마귀는 검다"는 명백히 까마귀에 관한 이야기인데, 대체 의자의 색깔이 이 가설과 무슨 상관이란 말인가?
이 귀결을 정당하다고 한다면 조류학을 연구하는 생물학자가 학술대회에 나와서 "모든 까마귀가 검다는 가설을 입증해주는 새로운 증거들을 발견했습니다. 제 연구실의 흰 의자, 제가 입고 있는 빨간 티셔츠 같은 것들 말입니다"라고 발표해도 된다는 것이다. 즉 새라고는 한 마리도 없는 방 구석에 처박혀서도 조류학에 대한 새로운 발견을 해낼 수 있는 셈이다. 그렇지만 이게 말이 되는가?
그러므로 상기한 조건(1)과 조건(2)는 직관적으로 매우 설득력있는 전제 같지만, 그로부터 이처럼 매우 부조리한 결론이 도출된다는 점에서 역설이 성립한다.
4. 영향
이 역설을 제시한 헴펠 본인은 위와 같은 귀결이 역설적이라는 게 심리적 착각에 불과하다고 주장했다. 즉, 흰 의자도 논리적으로 따지자면 가설 "모든 까마귀는 검다"를 충분히 입증한다는 것이다. 하지만 이후 대부분의 과학철학자들은 헴펠의 주장을 거부하였으며, 확률적 귀납주의와 같이 위와 같은 역설을 충분히 해결할 수 있는 각종 이론들을 제시하였다. 대표적인 이론들을 참고하기 위해서는 과학철학 문서나 해당 링크 참조 (영어 주의).즉, 21세기 현대에 논의되는 대부분의 과학적 방법에 관한 이론들은 헴펠의 까마귀 역설을 해결하기 위한 나름의 이론적 장치들을 잘 갖추고 있다. 그럼에도 불구하고 헴펠의 역설은 철학과 학부 과학철학 수업에서 가설, 입증 같은 개념이 생각보다 얕잡아볼만한 것이 아니라는 것을 알려주기 위한 고전적인 예시로 잘 쓰인다.
5. 여담
데이비드 흄이 제기한 것으로 유명한 귀납논증의 문제와 혼동되는 경우가 잦다. 헴펠의 역설이나 귀납의 문제나 둘다 귀납논증의 문제점을 다루지만 개념상 전혀 다르다.엄밀히 따지면 헴펠이 언급한 것은 Crow가 아닌 Raven이므로 큰까마귀라고 번역하는 것이 옳겠지만, 본 명제에서는 일단 까맣기만 하면 상관 없으므로 까마귀라고 해도 이해의 어려움은 없다.
서브컬쳐 쪽에서는 용기사07의 사운드노벨 괭이갈매기 울 적에에서 언급된 덕택에 유명해진 것 같다. 하지만 해당 사운드노벨에서는 잘못 인용하고 있다. 해당 작품에서는 헴펠의 까마귀는 까마귀의 사례만 언급할 뿐 그냥 대우를 이용한 논증을 이야기하는 것 뿐이다. 그나마도 '검지 않은 새는 까마귀가 아니다'라고 잘못된 대우를 취해서 의자나 책상 등이 나오는 역설의 핵심[3]이 빠져있다. 또한 '모든 까마귀'에 해당하는 그룹을 그냥 한 덩어리로 묶어버려 귀납적 상황도 없애버렸다. 즉 이 작품에서 언급하는 헴펠의 까마귀는 귀납적이지도 않고, 역설도 아니다. 그냥 '어려워보이는 명제도 대우 명제의 참/거짓을 판별함으로써 쉽게 증명할 수 있다'가 끝이다. 한 술 더 떠서 '나 이외의 사람은 어리석다'라는 명제를 '어리석지 않으면 나다'라는 대우 명제로 바꿔놓고 이를 '나는 어리석지 않다'라는 대우 명제의 역인(즉, 이인 명제) 명제를 통해 참이라 증명하는 오류를 범하기도 하였다.