최근 수정 시각 : 2023-04-23 11:13:42

칸텔리 부등식


절대부등식
Inequalities
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all"
코시-슈바르츠 부등식 산술·기하 평균 부등식
[math(\left({a_n})({b_n}\right)\ge\left({a_n}{b_n}\right))] [math(\frac{a_n+b_n}{n}\ge\sqrt[n]{{a_n}{b_n}})]
젠센 부등식 영 부등식
[math(\lambda_n f\left(x_n\right)\ge f\left({\lambda_n}{x_n}\right))] [math(ab \leq \frac{a^p}{p}+\frac{b^q}{q})]
횔더 부등식 민코프스키 부등식
[math(\|fg\|_1\le\|f\|_p\|g\|_q)] [math(\|f+g\|_p\le\|f\|_p+\|g\|_p)]
마르코프 부등식 체비쇼프 부등식
[math(\frac{E(X)}k\ge{\rm P}(X\ge k))] [math(P(|X-\mu|<k\sigma)\geq1-\frac1{k^2})]
슈르 부등식
[math(a\left(x-y\right)\left(x-z\right)+b\left(y-z\right)\left(y-x\right)+c\left(z-x\right)\left(z-y\right)\geq0)]
합 기호는 아인슈타인 합 규약을 일부 사용해 단축하였다. }}}}}}}}}}}}

통계학
Statistics
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
<colbgcolor=#4d4d4d><colcolor=#fff> 수리​통계학 기반 실해석학(측도론) · 선형대수학 · 이산수학
확률론 사건 · 가능성 · 확률변수 · 확률분포(표본분포 · 정규분포 · 이항분포 · 푸아송 분포 · 카이제곱분포 · t-분포 · z-분포 · F-분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙(무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙
통계량 평균(산술평균 · 기하평균 · 조화평균 · 멱평균 · 대수평균) · 기댓값 · 편차(절대편차 · 표준편차) · 분산(공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도
추론​통계학 가설 · 변인 · 추정량 · 점추정 · 신뢰구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도
통계적 방법 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석(요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습(군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타분석 · 모델링(구조방정식)
기술​통계학 · 자료 시각화 도표(그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 }}}}}}}}}

1. 개요2. 증명

1. 개요

Cantelli's inequality

이탈리아 수학자 프란체스코 파올로 칸텔리체비쇼프 부등식에서 발전시킨 부등식으로 체비쇼프 부등식에서 한쪽만 알고 싶을 때 사용하는 부등식이다. 확률밀도함수가 대칭이 아닐 경우, 체비쇼프 부등식의 좌변이 절댓값인 점을 이용해 [math(1/2)]를 곱해서 쉽게 얻을 수 없기 때문에 칸텔리 부등식을 사용해야 된다.

칸텔리 부등식에 따르면, 확률 분포의 평균을 [math(\mathbb{E}[X])], 분산을 [math(\sigma^2)]로 표현할 떼,
[math(P[X - \mathbb{E}[X] \ge \lambda] \le \frac{\sigma^2}{\sigma^2 + \lambda})]

로 표현할 수 있다. 단, [math(\lambda)]가 양의 상수이다.

2. 증명