'''열역학 · 통계역학 ''' | |||
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break:keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" | 기본 개념 | <colbgcolor=#FFF,#111><colcolor=#000,#fff>열역학 법칙{열역학 제1법칙(열역학 과정) · 열역학 제2법칙(엔트로피)} · 질량 보존 법칙 · 에너지 · 물질 · 온도(절대영도) · 압력 · 열(비열 · 열용량) · 일(일률) · 계(반응계 · 고립계) · 상 · 밀도 · 기체 법칙{보일 법칙 · 샤를 법칙 · 게이뤼삭 법칙 · 아보가드로 법칙 · 이상 기체 법칙(이상 기체)} · 기체 분자 운동론 | |
통계역학 | 앙상블 · 분배함수 · 맥스웰-볼츠만 분포 · 페르미-디랙 분포 · 보스-아인슈타인 분포 · 맥스웰-볼츠만 통계 · 페르미-디랙 통계 · 보스-아인슈타인 통계 · 페르미온 응집 · 보스-아인슈타인 응집 · 복잡계(카오스 이론) · 흑체복사 · 브라운 운동 · 역온도 · 위상 공간 | ||
열역학 퍼텐셜 | 내부 에너지 · 엔탈피 · 자유 에너지(헬름홀츠 자유 에너지 · 깁스 자유 에너지) · 란다우 퍼텐셜 · 르장드르 변환 | ||
응용 및 현상 | 현상 | 가역성 · 화학 퍼텐셜 · 상전이 · 열전달{전도(열전도율 · 전도체) · 대류 · 복사} · 판데르발스 힘 · 열처리 · 열량(칼로리) · 네른스트 식 · 물리화학 둘러보기 | |
열기관 | 내연기관 · 외연기관 · 열효율(엑서지) · 열교환기(히트펌프) · 카르노 기관 · 영구기관 · 열전 소자 | ||
관련 문서 | 화학 둘러보기 · 스털링 근사 · 전자친화도 · 이온화 에너지 · 응집물질물리학 · 고체물리학 · 기계공학 · 화학공학 · 정보이론 · 맥스웰의 악마 · 볼츠만 두뇌 · 에르고딕 가설 · 브라질너트 효과 | }}}}}}}}} |
기체 법칙 | ||||
보일 법칙 ([math(P \propto {V^{-1}})]) | 샤를 법칙 ([math(V \propto T)]) | 기체 반응 법칙 ([math(V_1:V_2= n_1:n_2)]) | 아보가드로 법칙 ([math(V \propto n)]) | 이상 기체 법칙 ([math(PV=nRT)]) |
* 기체 반응 법칙은 게이뤼삭 법칙의 다른 이름이다. 다만 이는 샤를의 법칙의 다른 이름이기도 하다. |
Loi de Gay-Lussac / Gay-Lussac 法則
1. 개요
프랑스 화학자 루이 조제프 게이뤼삭(Louis Joseph Gay-Lussac)이 발표한 법칙 두 가지를 일컫는 말.게이뤼삭 1808년 논문의 기체가 반응할 때의 부피비에 대한 기체 반응의 법칙과 게이뤼삭 1802년 논문의 기체의 온도와 부피의 관계에 관한 법칙인 샤를 법칙을 말한다.
2. 밀도
기체(물질량)은 부피[math( (V) )]와 관계있다는 이러한 기체에 대한 전반적인 이해에 기반하는 맥락(context)의 게이뤼삭 법칙의 출발점은 밀도[math( \left(\dfrac{m}{V} =\rho \right) )]에대한 너무나도 당연시되는 물리현상에 대한 끊임없는 재발견을 시도한 불굴의 노력의 결실이라는 점에서 시사하는 바가 매우 크다고 할수있다.[가][나]이상기체방정식의 밀도(density,[math(\rho)])
[math( 밀도 = \dfrac{m(질량)}{V(부피)}= \dfrac{P(압력)M(몰농도)}{T(온도)R(기체상수)} )]
토리첼리 공식(속도항) [math( \dfrac{v^2}{2g}=h )]에서 압력항(밀도항) [math( \left(\dfrac{P}{\rho} \right) )]이 추가 제안된 베르누이 정리
[math( \dfrac{v^2}{2g} + h + \dfrac{P}{\rho} = const. )]
2.1. 압력항
압력에너지는 [math( \int^P_0 V dp )]이고 [math( \rho = \dfrac{m}{V} )]이므로[math( \int^P_0 V dP = \dfrac{m}{\rho}\int dP = \dfrac{m}{\rho} P)]
따라서
[math( \dfrac{m}{\rho}P = )] 질량 압력항을 표현할수있다.
3. 관련문서
*이상 기체 방정식*보일의 법칙
*토리첼리 정리
*표준 상태
[가] N.S.. GAY-LUSSAC. Mémoire sur la combinaison des substances gazeuses les unes avec les autres. Annales scientifiques de l'É.N.S. 3e série, tome 3 (1886) Par M. Gay-Lussac ,Lu à la Société philomathique le 3 décembre 1808#[나] Annales de chimie, ou recueil de mémoires concernant la chimie et les arts qui en dépendent, (et spécialement la pharmacie)1802 P137~175 "Sur la dilatation des gaz et des vapeurs, lues à l'Institut national,"Par M. Gay-Lussac #[가] [나]