최근 수정 시각 : 2024-11-19 20:00:53

연료 분사

  • 인잭터를 찾아왔다면 해당 문서로.

1. 개요2. 역사3. 기술적 사항
3.1. 간접 분사
3.1.1. 기계식3.1.2. 전자식
3.2. 직접 분사
4. 관련문서

1. 개요

내연기관에서, 내연기관의 연소실에 연료를 분사하거나, 혼합기를 조성하는 방식을 지칭하는 말이다.

2. 역사

연료 분사는 기화기(carburetor)에서 연료를 기화시키는 것과 달리 강제로 무()화시켜 혼합기를 조성하려는 시도에서 출발했다. 이는 디젤 엔진의 연료인 경유는 비휘발성이라 기화기로 잘 기화되지 않아 혼합기를 조성하는 것이 힘들었기 때문이었다. 연구 초창기부터 노즐을 이용한 고압 분사 방식을 채택했으며, 직접적으로 최초의 연료 분사식 엔진은 루돌프 디젤이 자신의 디젤 엔진에 보쉬 사의 노즐을 사용하는 것으로부터 시작됐다고 할 수 있다.

이후 가솔린 엔진에서도 기화기 없이 분사를 통해 혼합기 조성을 하는 방법이 연구되기 시작했고 1990년대 이후에는 거의 모든 자동차 회사에서 다중 연료 분사 방식(Multi-Point fuel Injection, MPi)을 채택했다. 2000년대 이후엔 직접 분사 엔진 또한 상용화에 성공, 대량으로 양산되어 일반 양산 차량에도 장착되기 시작한다.

3. 기술적 사항

분사는 직접 분사, 간접 분사 모두 연료 분사 노즐 혹은 인젝터를 통해 이뤄지며 디젤 엔진가솔린 엔진의 연료 분사 구조는 각 엔진의 연료 특성이나 엔진 특성의 차이와 비슷한 차이가 있다.

3.1. 간접 분사

연료를 연소실이 아닌 다른 곳에 분사하는 방식이다. 보통 휘발유 엔진의 포트 분사가 해당된다. 연료 인젝터가 연소실 밖 흡기 매니폴드에 위치하며, 따라서 흡기 매니폴드에서 연료 분사가 이뤄진다. 공기가 흡기 매니폴드로 흡입될 때에 연료가 분사되며, 이때 연료와 공기가 혼합된다.

분사되는 연료로 인해 흡기밸브쪽에는 연소 부산물인 카본 찌꺼기가 덜 쌓이는 특성을 보이기도 한다.

3.1.1. 기계식

잘 알려지지 않았지만 가솔린 엔진에도 기계식 인젝터(mechanical injector)가 있었다. 이 방식은 엔진 동력을 이용한 방식으로 고압 분사로 기화를 더 잘 일으키고 엔진의 급조작에 대해 연료 분사량의 반응성을 좋게 하기 위해 개발됐다. 독일에서는 베어링으로 유명한 FAG가 Kugelfischer(쿠겔피셔)라는 이름으로 상용화했다. 자주 사용되진 않았고 고압이 필요한 직분사 방식이었던 벤츠 300SL(W198) 정도를 대표로 꼽을 수 있다. 이런 단순한 기계식 인젝터에서 발전하여 1970년대 석유 파동을 겪으면서 연비 향상을 위해 좀 더 정교하게 다듬은 시스템이 제트로닉이다.

디젤 엔진에서는 처음 개발되던 당시부터 이미 별도의 인젝션 펌프[1]를 이용한 간접 분사식이 채택됐다. 가솔린 엔진과는 달리 연료를 기화시키기 어려운 디젤 엔진은 고압으로 무화 분사를 해야 하는데, 엔진 동력을 이용한 고압 펌프로는 분사 압력을 높이기에 한계가 있어 무화가 잘 일어나지 않으므로 연소 성능이 저하되는 문제가 있다. 이에 예연소실과 와류실 같은 부 연소실을 두어 여기에 분사하고 연료를 예열시켜 압축 착화가 잘 되도록 고안했다.

3.1.2. 전자식

가솔린 엔진은 인젝터 분사 방식에 따라 기통별 순차 분사 방식을 이용하는 MPI(Multi Point Injection)와 계속 분사 방식인 SPI(Single Point Injection) 혹은 TBI(Throttle Body Injection)가 있다. 전자는 아직까지 주로 사용되는 시스템이고 후자의 경우 대표적으론 대우 르망이 있다.

디젤 엔진은 플런저를 전자화시켰다. 거버너를 전자 제어 로직으로 대체해 전자 플런저 방식이 도입되어 분사량과 타이밍을 가변적으로 조절할 수 있었다.

진보된 방식으론 연료 펌프를 통해 공급된 연료가 각 실린더마다 고압으로 압축하는 작은 피스톤 형태의 고압 펌프가 배치되어 실린더에 미립자 형태로 분사하는 기술이다. 실린더 헤드에 달린 인젝터가 고압 펌프와 한 몸이 되어 분사량과 타이밍을 조절하는 전자식 유닛 인젝터(EUI)와 연료 라인에서 인젝터 가기 전 실린더 헤드에 따로 있는 고압 펌프가 이를 전자식으로 조절해 실린더에 연료를 고압 분사하는 전자식 유닛 펌프(EUP)가 있다. 이 역시 피드백 기능을 넣어 연료 분사량을 알맞게 조절해 배출가스 규제를 충족하기 위해 개발됐다.

ECU가 멍청하면 더욱 더 낮아진다. 이는 디젤 엔진은 연료 분사량을 조절해[2] 제어하는데, 배기가스 저감을 위해 분사량을 줄여버리면 결과는 당연하다.

3.2. 직접 분사

직접 분사는 연소실 내에 직접 연료를 분사하는 형태로, 보통 "직분사(Direct injection, Di)"라 줄여서 표현한다.

간접 분사에 비해서 효율이 높은데 이는 가솔린 엔진의 경우 실린더에 공기만 들어간 상태에서 분사하여 밸브 오버랩 시에 혼합기가 배기 밸브로 딸려나가 손실이 발생하는 것을 막을 수 있고, 혼합기 상태로만 연소실에 흡기되는 간접 분사 방식에 비해 더 미세하고 정확하게 분사량을 조절할 수 있기 때문이다.

점화시기 직전에 연료를 분사하는 이러한 특성 때문에 노킹의 위험에서 좀 더 자유로워져 압축비를 높여 열효율을 증가시키는 결과까지 생긴다. 제원표를 보면 동일 엔진일 때 직분사 방식의 압축비가 더 높다. 하지만 최근 높은 압축비로 인해 질소 산화물 배출이 늘어, 자동차 회사들은 배기가스 재순환 장치(Emission Gas Recirculation, EGR)로 연소 온도를 낮추고 그로 인해 발생되는 분진을 미립자 필터(디젤의 경우 DPF, 가솔린의 경우 GPF)로 포집해 재생하며, 선택 환원 장치(Selective Catalytic Reduction, SCR)로 질소 산화물을 질소와 수증기로 환원해 해결하려는 움직임을 보이고 있다.

디젤 엔진은 종래 간접 분사 방식에서는 "예연소실"에 분사하는 방식이였지만, 피스톤의 한 부분에 팽창 압력이 몰리는 문제가 있었고 가솔린 엔진보다 약 2배나 되는 압축비로 인해[3][4] 연료 압력 증가의 어려움으로 직분사 엔진 상용화가 늦었다.

디젤 직분사의 대명사 격으로 인식되는 "CRDi"시스템의 아이디어는 1960년대에 나왔으나 실생활의 적용은 1990년대 덴소에 의해서 시작된 것에서 그 단편을 볼 수 있다. 고압의 미립자화된 연료를 직접 분사하므로 연소실 전체에 연료가 고루 분사되고 무화율이 상승함에 따라 효율이 올라가 출력과 연비, 배기가스 배출이 이전에 비할 수 없을 만큼 좋아졌으며 헤드의 예연소실이나 와류실이 사라져 실린더당 밸브 수를 늘리는 것과 DOHC의 적용이 가능해져 엔진 성능도 비약적으로 상승했다.[5]

초기에 출시된 인젝터의 최고 분사압력이 1350bar[6] 이였다. 이후 강화되는 환경규제와 출력항상을 위하여 분사압이 높아져왔으며, 2020년대에 분사압이 2700bar 인젝터까지 상용화됐다.

4. 관련문서



[1] 정비 현장에서 부란자로 부른다. 랙과 거버너 같은 기계 장치를 이용해 연료량과 연료 차단을 실시한다.[2] 엑셀과 고압 펌프가 연결되어 있고 엔진 운전용 스로틀 밸브는 없고 EGR용 스로틀 밸브만 존재[3] 1990년대 때 가솔린은 8.5~10.1:1 디젤 논터보는 20:1 이상, 과급은 16~18:1 정도[4] 디젤 엔진은 간접 분사 시절에도 분사 시기를 통해 연소를 제어 했고, 연료 분사 시기 자체도 가솔린과는 달리 배기 밸브가 닫힌 시점부터 분사하기 때문에 그럴 염려가 애초부터 없어서 삭제[5] 무쏘의 2.9리터 터보가 약 120hp/25kg.m인데 비슷한 시기에 출시한 구형싼타페의 2리터 D엔진은 약 115hp/26kg.m의 성능을 낸다.[6] 약 1350기압. 1bar = 0.9869 기압

분류